Author: Zaltsman, A.
Paper Title Page
MOPMY007 Mechanical Design and 3-D Coupled RF, Thermal-Structural Analysis of Normal Conducting 704 MHz and 2.1 GHz Cavities for LEReC Linac 525
 
  • J.C. Brutus, S.A. Belomestnykh, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, M.C. Grau, C. Pai, L. Snydstrup, J.E. Tuozzolo, B. P. Xiao, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
Two normal conducting cavities operating at 704 MHz and 2.1 GHz will be used for the Low Energy RHIC electron Cooling (LEReC) under development at BNL to improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon. The single cell 704 MHz cavity and the 3-cell 2.1 GHz third harmonic cavity will be used in LEReC to correct the energy spread introduced in the SRF cavity. The successful operation of normal RF cavities has to satisfy both RF and mechanical requirements. 3-D coupled RF-thermal-structural analysis has been performed on the cavities to confirm the structural stability and to minimize the frequency shift resulting from thermal and structural expansion. In this paper, we will present an overview of the mechanical design, results from the RF-thermal-mechanical analysis, progress on the fabrication and schedule for the normal conducting RF cavities for LEReC.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY009 HOM Consideration of 704 MHz and 2.1 GHz Cavities for LEReC Linac 528
 
  • B. P. Xiao, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, J.C. Brutus, A.V. Fedotov, H. Hahn, G.T. McIntyre, C. Pai, K.S. Smith, J.E. Tuozzolo, Q. Wu, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
  • S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 and by National Energy Research Scientific Computing Center under contract No. DE-AC02-05CH11231 by US DOE.
To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. The Linac of LEReC is designed to deliver 2 MV to 5 MV electron beam, with rms dp/p less than 5·10-4. The HOM in this Linac is carefully studied to ensure this specification.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY010 RF Design of Normal Conducting 704 MHz and 2.1 GHz Cavities for LEReC Linac 532
 
  • B. P. Xiao, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, J.C. Brutus, A.V. Fedotov, H. Hahn, G.T. McIntyre, C. Pai, K.S. Smith, J.E. Tuozzolo, Q. Wu, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
  • S.A. Belomestnykh, I. Ben-Zvi, T. Xin
    Stony Brook University, Stony Brook, USA
  • V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 and by National Energy Research Scientific Computing Center under contract No. DE-AC02-05CH11231 by US DOE.
To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. Two normal conducting cavities, a single cell 704 MHz cavity and a 3 cell 2.1 GHz third harmonic cavity, will be used in LEReC for energy spread correction. Currently these two cavities are under fabrication. In this paper we report the RF design of these two cavities.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY052 200 MeV H Linac Upgrades at Brookhaven 968
 
  • D. Raparia, J.G. Alessi, G. Atoian, B. Briscoe, C. Cullen, D.M. Gassner, O. Gould, M. Harvey, T. Lehn, V. LoDestro, M. Mapes, I. Marneris, A. McNerney, J. Morris, W.E. Pekrul, J. Ritter, R.F. Schoenfeld, F. Severino, C. Theisen, A. Zaltsman, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  The 200 MeV H Linac has been operational for the last 45 years providing beam for the physics and isotope programs. Currently we are upgrading the Linac for improved reliability and integrated intensity. Recently we replaced the 7651 tubes with solid-state RF amplifiers. In addition, the low level RF system and Timing system were upgraded and new beam loss monitors were installed that is sensitive at low-energies and to neutrons. We have a plan for future upgrades to the vacuum, Controls, diagnostics and power supply systems. In order to achieve higher average current for the isotope program, it is plan to increase the beam pulse length from 450 us to 900 us. This will require modifications to the RF and all pulse power supply systems.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW038 RHIC Operation with Asymmetric Collisions in 2015 1527
 
  • C. Liu, E.C. Aschenauer, G. Atoian, M. Blaskiewicz, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, T. Hayes, H. Huang, R.L. Hulsart, J.S. Laster, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, G. Narayan, S.K. Nayak, S. Nemesure, P.H. Pile, A. Poblaguev, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, G. Wang, K. Yip, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Collisions with beams of highly asymmetric rigidities (proton-Gold and proton-Aluminum) were provided for the RHIC physics programs in 2015. Magnets were moved for the first time in RHIC prior to the run to accommodate the asymmetric beam trajectories during acceleration and at store. A special ramping scheme was designed to keep the revolution frequencies of the beams in the two rings equal. The unique operational experience of the asymmetric run will be reviewed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZA01 RHIC Performance with Stochastic Cooling for Ions and Head-on Beam-beam Compensation for Protons 2055
 
  • W. Fischer, J.G. Alessi, Z. Altinbas, E.C. Aschenauer, G. Atoian, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, M.R. Costanzo, T. D'Ottavio, K.A. Drees, A.V. Fedotov, C.J. Gardner, D.M. Gassner, X. Gu, C.E. Harper, M. Harvey, T. Hayes, J. Hock, H. Huang, R.L. Hulsart, J.P. Jamilkowski, T. Kanesue, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J. Morris, G. Narayan, C. Naylor, S. Nemesure, M. Okamura, S. Perez, A.I. Pikin, P.H. Pile, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, B. Van Kuik, G. Wang, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • M. Bai, Y. Dutheil
    FZJ, Jülich, Germany
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
The Relativistic Heavy Ion Collider (RHIC) has two main operating modes with heavy ions and polarized protons respectively. In addition to a continuous increase in the bunch intensity in all modes, two major new systems were completed recently mitigating the main luminosity limit and leading to significant performance improvements. For heavy ion operation stochastic cooling mitigates the effects of intrabeam scattering, and for polarized proton operation head-on beam-beam compensation mitigated the beam-beam effect. We present the performance increases with these upgrades for heavy ions and polarized protons, as well as an overview of all operating modes past and planned.
 
slides icon Slides WEZA01 [12.687 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEZA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB02 Record Performance of SRF Gun with CsK2Sb Photocathode 2085
 
  • I. Pinayev, Z. Altinbas, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, A.J. Curcio, A. Di Lieto, C. Folz, D.M. Gassner, M. Harvey, T. Hayes, R.L. Hulsart, J.P. Jamilkowski, Y.C. Jing, D. Kayran, R. Kellermann, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, G. Narayan, P. Orfin, D. Phillips, T. Rao, J. Reich, T. Roser, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, V. Soria, Z. Sorrell, R. Than, C. Theisen, J.E. Tuozzolo, E. Wang, G. Wang, B. P. Xiao, T. Xin, W. Xu, A. Zaltsman, Z. Zhao
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
High-gradient CW photo-injectors operating at high ac-celerating gradients promise to revolutionize many sci-ences and applications. They can establish the basis for super-bright monochromatic X-ray and gamma-ray sources, high luminosity hadron colliders, nuclear- waste transmutation or a new generation of microchip produc-tion. In this paper we report on our operation of a super-conducting RF electron gun with a record-high accelerat-ing gradient at the CsK2Sb photocathode (i.e. ~ 20 MV/m) generating a record-high bunch charge (i.e., 2 nC). We briefly describe the system and then detail our experimental results.
 
slides icon Slides WEOAB02 [28.500 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOAB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR041 RF and Mechanical Design of 647 MHz 5-Cell BNL4 Cavity for eRHIC ERL 2364
 
  • W. Xu, I. Ben-Zvi, H. Hahn, G.T. McIntyre, C. Pai, R. Porqueddu, K.S. Smith, J.L. Tuozzolo, J.E. Tuozzolo, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by LDRD program of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
A 647 MHz 5-cell cavity has been designed for the envisioned EIC at BNL which is configured as an eRHIC ERL with a FFAG lattice to achieve the necessary e-p luminosity. The cavity was optimized to allow propagation of all HOMs out of the cavity for high BBU threshold current and low HOM power (loss factor). eRHIC will collide the electron beam over a wide energy range with protons from 40 GeV to 250 GeV, which requires the cavity to tune up to 170 kHz at 2 K. This poses a true challenge to the mechanical design of the SRF cavity. This paper will present the RF and mechanical designs of the 647 MHz 5-cell cavity, and status of the cavity fabrication will be addressed as well.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR042 Ridge Waveguide HOM Damping Scheme for High Current SRF Cavity 2367
 
  • W. Xu, I. Ben-Zvi, Y. Gao, H. Hahn, G.T. McIntyre, R. Porqueddu, V. Ptitsyn, K.S. Smith, R. Than, J.L. Tuozzolo, C. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by LDRD program of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
HOM damping is a challenge for high-current SRF linacs possibly generating HOM power at a level of 10 KW per cavity. A rectangular waveguide used as a natural high pass filter is a good option as high power, large spectrum HOM damper. However, its size is too big, causing a big challenge for the cooling and cryogenic system. A reliable, compact HOM damping scheme using a ridged waveguide is being developed to damp high power (> 10 kW), large spectrum HOMs ( up to 40 GHz) that may be generated in the 647 MHz 5-cell eRHIC ERL SRF linac. The size of a ridged waveguide is less than a quarter of the regular waveguide, which alleviates the thermal issue. This paper presents the design of a ridged waveguide and estimated HOM damping results using a ridged waveguide. The thermal or cooling design of the ridged waveguide will also be addressed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW027 The ERL-based Design of Electron-Hadron Collider eRHIC 2482
 
  • V. Ptitsyn, E.C. Aschenauer, I. Ben-Zvi, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, J.C. Brutus, O.V. Chubar, A.V. Fedotov, D.M. Gassner, H. Hahn, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, Y.C. Jing, R.F. Lambiase, V. Litvinenko, C. Liu, Y. Luo, G.J. Mahler, B. Martin, G.T. McIntyre, W. Meng, F. Méot, T.A. Miller, M.G. Minty, B. Parker, I. Pinayev, V.H. Ranjbar, T. Roser, J. Skaritka, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, E. Wang, G. Wang, H. Witte, Q. Wu, C. Xu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Recent developments of the ERL-based design of future high luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design (L ~ 1033 cm-2 s-1) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design (L > 1034 cm-2 s-1) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)