Paper | Title | Page |
---|---|---|
MOPMY009 | HOM Consideration of 704 MHz and 2.1 GHz Cavities for LEReC Linac | 528 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 and by National Energy Research Scientific Computing Center under contract No. DE-AC02-05CH11231 by US DOE. To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. The Linac of LEReC is designed to deliver 2 MV to 5 MV electron beam, with rms dp/p less than 5·10-4. The HOM in this Linac is carefully studied to ensure this specification. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY009 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMY010 | RF Design of Normal Conducting 704 MHz and 2.1 GHz Cavities for LEReC Linac | 532 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 and by National Energy Research Scientific Computing Center under contract No. DE-AC02-05CH11231 by US DOE. To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. Two normal conducting cavities, a single cell 704 MHz cavity and a 3 cell 2.1 GHz third harmonic cavity, will be used in LEReC for energy spread correction. Currently these two cavities are under fabrication. In this paper we report the RF design of these two cavities. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY010 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMW038 | RHIC Operation with Asymmetric Collisions in 2015 | 1527 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Collisions with beams of highly asymmetric rigidities (proton-Gold and proton-Aluminum) were provided for the RHIC physics programs in 2015. Magnets were moved for the first time in RHIC prior to the run to accommodate the asymmetric beam trajectories during acceleration and at store. A special ramping scheme was designed to keep the revolution frequencies of the beams in the two rings equal. The unique operational experience of the asymmetric run will be reviewed. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW038 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZA01 | RHIC Performance with Stochastic Cooling for Ions and Head-on Beam-beam Compensation for Protons | 2055 |
|
||
Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy. The Relativistic Heavy Ion Collider (RHIC) has two main operating modes with heavy ions and polarized protons respectively. In addition to a continuous increase in the bunch intensity in all modes, two major new systems were completed recently mitigating the main luminosity limit and leading to significant performance improvements. For heavy ion operation stochastic cooling mitigates the effects of intrabeam scattering, and for polarized proton operation head-on beam-beam compensation mitigated the beam-beam effect. We present the performance increases with these upgrades for heavy ions and polarized protons, as well as an overview of all operating modes past and planned. |
||
![]() |
Slides WEZA01 [12.687 MB] | |
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEZA01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEOAB02 | Record Performance of SRF Gun with CsK2Sb Photocathode | 2085 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. High-gradient CW photo-injectors operating at high ac-celerating gradients promise to revolutionize many sci-ences and applications. They can establish the basis for super-bright monochromatic X-ray and gamma-ray sources, high luminosity hadron colliders, nuclear- waste transmutation or a new generation of microchip produc-tion. In this paper we report on our operation of a super-conducting RF electron gun with a record-high accelerat-ing gradient at the CsK2Sb photocathode (i.e. ~ 20 MV/m) generating a record-high bunch charge (i.e., 2 nC). We briefly describe the system and then detail our experimental results. |
||
![]() |
Slides WEOAB02 [28.500 MB] | |
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOAB02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMR041 | RF and Mechanical Design of 647 MHz 5-Cell BNL4 Cavity for eRHIC ERL | 2364 |
|
||
Funding: This work is supported by LDRD program of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. A 647 MHz 5-cell cavity has been designed for the envisioned EIC at BNL which is configured as an eRHIC ERL with a FFAG lattice to achieve the necessary e-p luminosity. The cavity was optimized to allow propagation of all HOMs out of the cavity for high BBU threshold current and low HOM power (loss factor). eRHIC will collide the electron beam over a wide energy range with protons from 40 GeV to 250 GeV, which requires the cavity to tune up to 170 kHz at 2 K. This poses a true challenge to the mechanical design of the SRF cavity. This paper will present the RF and mechanical designs of the 647 MHz 5-cell cavity, and status of the cavity fabrication will be addressed as well. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR041 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMR042 | Ridge Waveguide HOM Damping Scheme for High Current SRF Cavity | 2367 |
|
||
Funding: This work is supported by LDRD program of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. HOM damping is a challenge for high-current SRF linacs possibly generating HOM power at a level of 10 KW per cavity. A rectangular waveguide used as a natural high pass filter is a good option as high power, large spectrum HOM damper. However, its size is too big, causing a big challenge for the cooling and cryogenic system. A reliable, compact HOM damping scheme using a ridged waveguide is being developed to damp high power (> 10 kW), large spectrum HOMs ( up to 40 GHz) that may be generated in the 647 MHz 5-cell eRHIC ERL SRF linac. The size of a ridged waveguide is less than a quarter of the regular waveguide, which alleviates the thermal issue. This paper presents the design of a ridged waveguide and estimated HOM damping results using a ridged waveguide. The thermal or cooling design of the ridged waveguide will also be addressed. |
||
DOI • | reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR042 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |