Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPEA031 | Study of Extraction and Transport of Intense Highly Charged Ions for 18GHz SC-ECRIS at RCNP | ion, extraction, cyclotron, plasma | 145 |
|
|||
An 18 GHz superconducting ECRIS has also been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP cyclotrons. The mirror magnetic field is produced with four liquid-helium-free superconducting coils and the permanent magnet hexapole is of Halbach type with 24 pieces of NEOMAX-44H material. The production development of several ions like B, O, N, Ne, Ar, Ni, Kr and Xe has been performed. Further study for its beam extraction and transport have been done in order to increase the beam injected to cyclotron. The parameters of extraction systems and electrostatic lens are optimized taking account with magnetic field leakage from AVF Cyclotron. Emittance study also has been done to see the quality of injection beam. For that purpose two types of emittance monitor have been developed. One is using three wire profile monitor and another has BPM with rotating wire for quick measurement. The details of these developments will be presented. | |||
MOPEA039 | Beam Commissioning and Neutron Radiography on a High Current Deuteron RFQ | rfq, neutron, cavity, target | 163 |
|
|||
Funding: Supported by NSFC 11079001 and Peking University The high current deuteron RFQ has been developed and widely used in many projects, especially for accelerator based neutron source and its application. This paper reviews not only the recent developments in the world wide, also presents the beam dynamics, structure design ,RF full power test, beam commissioning of PKUNIFTY, which is consisted of a high current very compact ECR source, a 201.5MHz four-rod deuteron RFQ, thicker beryllium target and its moderating, collimation and neutron radiography system. RF and beam commissioning with duty cycle of 4% show the RFQ inter-vane voltage reaches 70kV at about 240kW, the delivered deuteron peak beam current is about 12mA at 290kW with the beam transmission of about 60%. The improvement of transmission is going on. The initial neutron radiography commissioning has been carried out. The results will promote the future development of small accelerator based neutron source. |
|||
WEOAB201 | Intense Beam Ion Sources Development at IMP | ion, ion-source, heavy-ion, proton | 2082 |
|
|||
To satisfy the HIRFL (Heavy Ion Research Facility in Lanzhou) accelerators’ requirement and the needs of several other future accelerator facilities, many high beam intensity ion sources have been developed at IMP. The ion sources include intense high charge state ion beam ECR ion sources and high intensity proton beam ECR or microwave sources. This paper will review the high charge state ion sources developed at IMP, especially the recently built fully superconducting ECR ion source SECRAL, and the other classical ion sources and all permanent magnet ion sources will also be discussed. The latest performance of the recently built intense proton ion source which can operate continuously at more than 65emA beam (after LEBT) and 50kV source high voltage for more than 150 hours with very few HV spark intervals will be especially presented in this paper. | |||
![]() |
Slides WEOAB201 [3.381 MB] | ||
THPWO050 | High Power Test and Beam Commissioning of he CPHS RFQ Accelerator | rfq, klystron, vacuum, proton | 3884 |
|
|||
Funding: Work supported by the “985 Project” of the Ministry of Education of China, National Natural Science Foundation of China (Major Research Plan Grant No. 91126003 and 11175096). We present, in this paper, the high power test result and the beam commissioning status of a Radio Frequency Quadrupole (RFQ) accelerator for the Compact Pulsed Hadron Source (CPHS) at Tsinghua University. The 3-meter-long RFQ is designed to deliver 3 MeV protons to the downstream High Energy Beam Transport (HEBT) with the peak current of 50 mA, pulse length of 0.5 ms and beam duty factor of 2.5%. The RFQ has been designed, manufactured, and installed at Tsinghua University. High-vacuum test of the RFQ has been carried out carefully and the cooling system has been mounted. At the beginning of 2013, the high power RF test has been performed and the first 3 MeV proton beam is obtained. |
|||