Author: Migliorati, M.
Paper Title Page
MOPS068 Localization of Transverse Impedance Sources in the SPS using HEADTAIL Macroparticle Simulations 757
 
  • N. Biancacci, G. Arduini, E. Métral, D. Quatraro, G. Rumolo, B. Salvant, R. Tomás
    CERN, Geneva, Switzerland
  • N. Biancacci, M. Migliorati, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • R. Calaga
    BNL, Upton, Long Island, New York, USA
 
  In particle accelerators, beam coupling impedance is one of the main contributors to instability phenomena that lead to particle losses and beam quality deterioration. For this reason these machines are continuously monitored and the global and local amount of impedance needs to be evaluated. In this work we present our studies on the local transverse impedance detection algorithm. The main assumptions behind the algorithm are described in order to understand limits in reconstructing the impedance location. The phase advance response matrix is analyzed in particular for the SPS lattice, studying the different response from 90,180,270 degrees phase advance sections. The thin lenses scheme is also implemented and new analytical formulas for phase advance beating were derived. This avails us to put reconstructing lenses everywhere in the lattice, and to study their positioning scheme. Limits in linear response are analyzed. This sets the upper and lower limits in reconstruction to the phase advance measurement accuracy and the linear response regime limit.  
 
MOPS073 Impedance Calculation for Simple Models of Kickers in the Non-ultrarelativistic Regime 772
 
  • N. Biancacci, N. Mounet, E. Métral, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
  • N. Biancacci, M. Migliorati, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • Q. Qin, N. Wang
    IHEP Beijing, Beijing, People's Republic of China
 
  Kicker magnets are usually significant contributors to the beam coupling impedance of particle accelerators. An accurate understanding of their impedance is required in order to correctly assess the machine intensity limitations. The field matching method derived by H. Tsutsui for the longitudinal and transverse dipolar (driving) impedance of simple models of kickers in the ultrarelativistic regime was already extended to the non-ultrarelativistic case, and to the quadrupolar (detuning) impedance in the ultrarelativistic case. This contribution presents the extension to the quadrupolar impedance in the non-ultrarelativistic case, as well as benchmarks with other available methods to compute the impedance. In particular, all the components of the impedances are benchmarked with Tsutsui's model, i.e. in the ultrarelativistic limit, with the model for a flat chamber impedance recently computed by N. Mounet and E. Métral, in the case of finite relativistic gamma, and with CST Particle Studio simulations.  
 
WEPC107 Development of a Steady State Simulation Code for Klystron Amplifiers 2265
 
  • C. Marrelli
    CERN, Geneva, Switzerland
  • M. Migliorati, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  The design of klystrons is based on the intensive utilization of simulation codes, which can evaluate the complete beam-cavities interaction in the case of large signals. In the present work, we present the development of a 2-D steady state simulation code that can self-consistently evaluate the effects of the electromagnetic field on the particles and of the particles back on the field. The algorithm is based on the iterative solution of the power balance equation in the RF structures and allows determining the amplitude and phase of the electromagnetic field starting from the cavity modes. Some applications of the code to a single cavity and a two cavity klystron are presented and compared with the results obtained from other codes. The effect of the space charge forces in the klystron drift tubes is also evaluated.  
 
TUPO008 Electron Linac Optimization for Driving Bright Gamma-ray Sources based on Compton Back-scattering 1461
 
  • L. Serafini, F. Broggi, C. De Martinis, D. Giove
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • D. Alesini, P. Antici, A. Bacci, M. Bellaveglia, R. Boni, E. Chiadroni, G. Di Pirro, A. Esposito, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, E. Pace, A.R. Rossi, B. Spataro, P. Tomassini, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • C. Maroli, V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • M. Migliorati, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
 
  We study the optimal lay-out and RF frequency for a room temperature GeV-class Electron Linac aiming at producing electron beams that enhance gamma-ray sources based on Compton back-scattering. These emerging novel sources, generating tunable, mono-chromatic, bright photon beams in the range of 5-20 MeV for nuclear physics as well as nuclear engineering, rely on both, high quality electron beams and J-class high repetition-rate synchronized laser systems in order to achieve the maximum spectral density of the gamma-ray beam (# photons/sec/eV). The best option among the conventionally used RF linac-bands (S, C, X) and possible hybrid schemes will be analyzed and discussed, focusing the study in terms of best performances for the gamma-ray source, its reliability and compactness. We show that the best possible candidates for a Gamma-ray driver are quite similar to those of FEL Linacs.  
 
THYB01 Advanced Beam Manipulation Techniques at SPARC 2877
 
  • A. Mostacci, D. Alesini, P. Antici, A. Bacci, M. Bellaveglia, R. Boni, M. Castellano, E. Chiadroni, G. Di Pirro, A. Drago, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, E. Pace, A.R. Rossi, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • B. Marchetti
    INFN-Roma II, Roma, Italy
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
  • L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • V. Petrillo, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  SPARC in Frascati is a high brightness photo-injector used to drive Free Electron Laser experiments and explore advanced beam manipulation techniques. The R&D effort made for the optimization of the beam parameters will be presented here, together with the major experimental results achieved. In particular, we will focus on the generation of sub-picosecond, high brightness electron bunch trains via velocity bunching technique (the so called comb beam). Such bunch trains can be used to drive tunable and narrow band THz sources, FELs and plasma wake field accelerators.  
slides icon Slides THYB01 [20.772 MB]