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Abstract

The design of klystrons is based on the intensive
utilization of simulation codes, which can evaluate the
complete beam-cavities interaction in the case of large
signals. In the present work, we present the development
of a 2-D steady state simulation code that can self-
consistently evaluate the effects of the electromagnetic
field on the particles and of the particles back on the field.
The algorithm is based on the iterative solution of the
power balance equation in the RF structures and it allows
determining the amplitude and phase of the
electromagnetic field starting from the cavity modes.
Some applications of the code to a single cavity and a two
cavity klystron are presented and compared with the
results obtained from theory and from another code.
Effects of space charge forces in the drift tubes are also
evaluated.

INTRODUCTION

The tools commonly used to design klystrons can be
divided in two main categories: on one side we have the
so-called disk codes, which are steady state, very fast
(usually 1-D) codes, while on the other side we have the
more accurate and general-purpose PIC codes.

In the present work, we present a steady state algorithm
that can self-consistently compute the motion of charged
particles in the presence of electromagnetic fields: the
charged particles contribute to the fields, and the fields act
back on the charged particles. The algorithm is valid not
only for static fields, as it is in some gun codes [1], but
also for RF fields, so that it can be applied to the case of
klystron cavities, feeded or not. This can be implemented
to write a klystron simulation code which finds a steady
state solution for the system.

THE SIMULATION ALGORITHM

We derive here an equation that expresses the
amplitude and phase of the field inside the cavity as a
function of the beam current density and that can be
solved iteratively in order to obtain a complete
description of the mutual interaction between the electron
beam and the klystron resonators.

Cavity Balance Equation

We consider a generic electromagnetic resonator, fed
from a RF driver and with an electron beam going
through it. Since the natural modes of a resonator form a
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complete and orthogonal set, the cavity field can be
expanded in terms of these natural modes:

E =Zai5i ﬁ =Zﬁiﬁi (1)
i

L
With §; = %ai. If the cavity is driven at a frequency that
is close to the resonant frequency of a particular mode,
and the quality factor of that mode is high enough, the
amplitude of that mode will be large with respect to all
the others. This case is very common for klystron cavities,
so it is possible to consider only one mode in the
expansions:
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The field in the cavity is then equal to the natural field of
the design mode of the structure, multiplied by a complex
coefficient o, to be determined in amplitude and phase. To
get an expression for this coefficient, we apply the
Poynting theorem to the volume V of the cavity delimited
by the surface S (fig. 1):
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Figure 1: Poynting theorem applied to the cavity (beam
pipe not represented).
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The first integral in equation (3) can be separated in two
parts: an integral over the waveguide aperture S;, that can
be expressed by using the transmission line formalism [2],
and an integral over the remaining surface S,, that can be
written by using the Leontovich-Schelkunoff condition

for good conductors; we can then assume 7 X H= [)’HO
on the surface [3], and then use the definition of the
quality factor Q, of the cavity. With some manipulations
[4] the balance equation becomes:
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Where & = wio—% and u = ngv (6, -2, )av. The left

side of eq. (4) contains the power flowing across the
waveguide aperture; the incoming wave can be written in
terms of the input power V' = 1IZZOP”\,ejq"Jr, while the
outcoming wave can be expressed as V™ = -Vt + V¢,
where 7° is the wave emitted from the cavity. Its
amplitude depends only on the stored energy, while its
phase can be expressed as a function of the phase of the
incoming field, V" if there is no beam; if there is also the
beam, it depends also on the phase of the field inside the
cavity (i.e., on the phase of o). We then have the final
equation for the complex coefficient a.:
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The first term in equation (5) is due to the input power
coming from the waveguide, and it is obviously different
from zero only for the case of the klystron input cavity.
The last integral represents the interaction between the
cavity field and the beam current density. This current can
be written as the sum of the N individual electron
currents, so that we get, after some manipulations, the
final expression of the coefficient:
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The Simulation Algorithm

In order to get the value of the field coefficient o we
need to know the positions and the velocities of all the
particles along the cavity. This means that we have to
solve the relativistic equations of motion for all the N
particles in presence of the electromagnetic field given by
(2). The simulation algorithm is the following:

1. Assume an initial value a; for the field
coefficient;

2. Integrate the equations of motion for each
particle through the length of the cavity with

the field E = a,8, and H = %alﬁo, where &,

and HO can be obtained from an
electromagnetic simulation code as the FEM
code developed by S. Tantawi;

3. Calculate the new value o, for the field
coefficient through eq. (6);

4. If ap,=0, (within a certain tolerance) go to the
next step; otherwise assume a new value for o,
and go to step 2.

5. Calculate the steady state solution for the
electromagnetic field by eq. (2).

Simulations Results

The routine described in the previous paragraph has
been implemented using Mathematica [5]. In order to
check the self-consistency of the method, the first step has
been the simulation of a simple X-band pillbox input
cavity (11.424 GHz) with a 100 A-100 KV beam flowing
through it. We used, as a first approximation, the
analytical field of an ideal cylindrical cavity without
beam pipe plus a Brillouin focusing magnetic field, and
we neglected the space charge forces between particles.

Fig. 2 shows the outcoming power P, = % |V, —VT*|?
as a function of the cavity resonant frequency for an input
power of 250 W and an external Q of 95, chosen to
minimize reflections. We can see that we have a
minimum of the outcoming power from the cavity at
11.450 GHz, slightly above the design frequency, as
expected in the presence of the electron beam.
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Figure 2: Outcoming power from a pillbox input cavity as
a function of resonance frequency (GHz).

The algorithm has then been applied to a cavity with no
RF power coming from a driver, like the output cavity of
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a two cavity klystron. Space charge forces have been still
neglected. In this case the beam itself is responsible of the
field excitation and the modulated beam is the one
coming from the previous input cavity followed by a 30
cm drift. In this case the cavity resonant frequency and
the external Q are optimized to maximize the output
power so that we get a maximum efficiency for this
simple device of 30% at 11.364 GHz with Q.,=40.

The results of the previous simulations have been
compared to the ones obtained with klystron kinematic
theory and with AJDisk [6], a 1-D simulation code for
round and sheet beem klystrons developed at SLAC.

Fig. 3 shows the voltage induced by the beam in the
second cavity of a two cavity klystron as a function of the
beam current. The new algorithm shows a good
agreement with AJDisk in the case of very low current
simulations, while the voltage is overestimated in the case
of higher beam currents, as expected, since the effect of
the space charge forces has not been included yet in the

algorithm.
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Figure 3: Voltage in the second cavity calculated with the
Mathematica algorithm (blue), AJDisk (red) and
kinematic theory (green).

The Space Charge Field

An iterative method to evaluate the effects of the space
charge fields in the drift tubes between klystron cavities
has then been developed and it is being implemented in
the code.

We search the steady state solution by applying the
method shown in fig.4: the first iteration consists of a
simple tracking of the electrons through the drift tube,
without considering any kind of space charge field. The
result is a complete description of the particles phase
space as a function of time inside the pipe between two
cavities. After this first tracking we can calculate the
space charge potentials generated by the previous
particles distribution in every point of the pipe and for
every time t. This can be done either analytically (with
some approximations), or numerically, by solving the
Poisson’s equation (in the particles frame and then
Lorentz transforming) with an electromagnetic solver.
These potentials are then used to integrate the equations
of motion during the second iteration. The space charge
potentials can then be recalculated and the procedure is
iterated until it reaches convergence.
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Figure 4: Flow chart for the steady state simulations with
space charge.

This routine has been implemented so far only by using
the analytical approach and by making some
approximations in order to preserve the simplicity and the
speed of the code; in particular, free space potentials have
been used for the calculation of the space charge fields.

Further work has to be done in order to optimize the
implementation of the complete space charge algorithm.

CONCLUSIONS

A steady state algorithm which can self-consistently
simulate the complete beam-cavity interaction has been
presented. The method is based on the iterative solution of
a power balance equation, and it determines the amplitude
and phase of the electromagnetic field inside the structure
starting from the cavity mode field.

The algorithm has been implemented using
Mathematica and it has been applied to some simple
situations in absence of space charge effects.

The effect of the space charge forces has then been
introduced by using an iterative routine and its complete
implementation is still in progress.
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