

Advanced Beam Manipulation Techniques at SPARC

A. Mostacci, on behalf of the SPARC team

SPARC in Frascati is a high brightness photo-injector used to drive Free Electron Laser experiments and explore advanced beam manipulation techniques. The R&D effort made for the optimization of the beam parameters will be presented here, together with the major experimental results achieved. In particular, we will focus on the generation of sub-picosecond, high brightness electron bunch trains via velocity bunching technique (the so called comb beam). Such bunch trains can be used to drive tunable and narrow band THz sources, FELs and plasma wake field accelerators.

OUTLINE

Advanced Beam Manipulation Techniques at SPARC

Recent and forthcoming technological upgrades have made SPARC a unique test bench for R&D on high brightness electron beam and their applications, other than SASE FEL activity already assessed.

Main technological aspects of SPARC present layout.

Longitudinal bunch compression @ 5-6 MeV: the velocity bunching.

Advanced beam manipulation technique: generation of sub-ps, high brightness electron bunch trains (COMB beam).

Application of COMB beams (THz source, FEL, PWFA).

On going technological upgrades and perspectives (e.g. Thomson source).

Advanced Beam Manipulation Techniques at SPARC

ACKNOWLEDGMENTS

Beam dynamics, RF technology, Machine operation, THz radiation, FEL theory and experiments

(INFN, Sapienza University, Tor Vergata University, Enea, CNR)

<u>M. Ferrario</u>, D. Alesini, P. Antici, A. Bacci, M. Bellaveglia, R. Boni, P. Calvani, M. Castellano, L. Catani, E. Chiadroni, A. Cianchi, F. Ciocci, G. Dattoli, M. Del Franco, G. Di Pirro, A. Drago, F. Frassetto, A. Gallo, G. Gatti, A. Ghigo, L. Giannessi, O. Limaj, S. Lupi, B. Marchetti, M. Migliorati, A. Nucara, E. Pace, L. Palumbo, A. Petralia, V. Petrillo, L. P. Poletto, M. Quattromini, J.V. Rau, C. Ronsivalle, A. R. Rossi, V. Rossi Albertini, E. Sabia, L. Serafini, M. Serluca, B. Spataro, I.P. Spassovsky, V. Surrenti, C. Vaccarezza.

National and International collaboration and networks

C. Pellegrini, J.B. Rosenzweig, P. Musumeci PBPL @ UCLA (beam dynamics, FEL physics, RF technology, advanced diagnostics), M. Couprie group @ SOLEIL (FEL seeding), Fermi @ ELETTRA (commissioning, FEL, LLRF, advanced diagnostics), PSI SwissFEL (C band RF systems), KEK (C band RF sections), P. Muggli @ MAX PLANK(PWFA future experiment), Tiara, EuroNac, L. Cultrera (Cornell), L. Ficcadenti (CERN), D. Filippetto (LBNL), C. Vicario (PSI).

Advanced Beam Manipulation Techniques at SPARC

SPARC LAYOUT

Advanced Beam Manipulation Techniques at SPARC

SPARC LAYOUT: LASER SYSTEM

Advanced Beam Manipulation Techniques at SPARC

SPARC LAYOUT: S-BAND GUN

Advanced Beam Manipulation Techniques at SPARC

SPARC LAYOUT: S-BAND LINAC

Advanced Beam Manipulation Techniques at SPARC

SPARC LAYOUT: DIAGNOSTICS AND MATCHING

Advanced Beam Manipulation Techniques at SPARC

SPARC LAYOUT: UNDULATORS

Period	2.8 cm	
Undulator length	2.156.m	
No of Periods	77	
Gap (nom./min/max)	0.958 / 0.6 / 2.5 cm	
K (nom./max/min)	2.145 / 3.2 / 0.38	
Remanent field	1.31 T	
Blocks per period	4	
Block size (h x l x w)	2 x 0.7 x 5 cm	

Advanced Beam Manipulation Techniques at SPARC

SPARC LAYOUT: PHOTON DIAGNOSTICS

Advanced Beam Manipulation Techniques at SPARC

SPARC LAYOUT: THZ SOURCE

Advanced Beam Manipulation Techniques at SPARC

THE VELOCITY BUNCHING

Advanced Beam Manipulation Techniques at SPARC

THE VELOCITY BUNCHING

Phase (deg)

Advanced Beam Manipulation Techniques at SPARC Andrea Mostacci (Sapienza University, INFN-LNF)

Length (mm)

VB CHIRPED BEAM INTO AN UNDULATOR

PRL 106, 144801 (2011)

PHYSICAL REVIEW LETTERS

week ending 8 APRIL 2011

Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering

L. Giannessi,^{1,*} A. Bacci,^{2,4} M. Bellaveglia,² F. Briquez,¹⁰ M. Castellano,² E. Chiadroni,² A. Cianchi,⁸ F. Ciocci,¹ M. E. Couprie,¹⁰ L. Cultrera,² G. Dattoli,¹ D. Filippetto,² M. Del Franco,¹ G. Di Pirro,² M. Ferrario,² L. Ficcadenti,² F. Frassetto,⁶ A. Gallo,² G. Gatti,² M. Labat,¹⁰ G. Marcus,⁹ M. Moreno,⁵ A. Mostacci,⁵ E. Pace,² A. Petralia,¹ V. Petrillo,^{3,4} L. Poletto,⁶ M. Quattromini,¹ J. V. Rau,⁷ C. Ronsivalle,¹ J. Rosenzweig,⁹ A. R. Rossi,^{2,4} V. Rossi Albertini,⁷ E. Sabia,¹ M. Serluca,⁵ S. Spampinati,¹¹ I. Spassovsky,¹ B. Spataro,² V. Surrenti,¹ C. Vaccarezza,² and C. Vicario²

GENERATION OF A TRAIN OF BUNCHES: LASER COMB

Advanced Beam Manipulation Techniques at SPARC

COMB BEAM GENERATION AND MANIPULATION

P. O'Shea et al., Proc. of PAC05, p.704 (2005).

M. Boscolo, M. Ferrario et al., NIM A 577, 409-416 (2007)

Advanced Beam Manipulation Techniques at SPARC

LASER PULSE TRAIN GENERATION

IPAC 2011 SAN SEBASTIÁN SPAIN SPAIN SPIERATIONAL PARTICLE 2014 CACCELERATOR CONFERENCE SEPTEMBER 2011

Advanced Beam Manipulation Techniques at SPARC

COMB BEAM MANIPULATION

Advanced Beam Manipulation Techniques at SPARC

PERFORMANCE IMPROVEMENTS

Beam energy at the gun exit

M. Bellaveglia, M. Ferrario, A. Gallo,

14 MW - 130 MV/m - 6.2 MeV

11 MW - 115 MV/m - 5.1 MeV

7.5 MW - 95 MV/m - 4.4 MeV

IPAC 2011 SAN SEBASTIÁN SPAIN SPAIN

Advanced Beam Manipulation Techniques at SPARC

LONG. DYNAMICS: THE COMPRESSION CURVE

TSTEP simulation by C. Ronsivalle

Advanced Beam Manipulation Techniques at SPARC

TWO SUB-BUNCHES BEAM: LONG. PHASE SPACE

Advanced Beam Manipulation Techniques at SPARC

TWO SUB-BUNCHES BEAM: SEPARATION

Measurements with 160pC compared to TSTEP simulation

TSTEP simulation by C. Ronsivalle

Advanced Beam Manipulation Techniques at SPARC

FEL LIGHT FROM A TWO BUNCHES COMB BEAM

Advanced Beam Manipulation Techniques at SPARC

INTERNATIONAL PARTICLE

FOUR PULSES COMB BEAM

Advanced Beam Manipulation Techniques at SPARC

Advanced Beam Manipulation Techniques at SPARC

LONGITUDINAL PHASE SPACE ROTATION

Advanced Beam Manipulation Techniques at SPARC

DEEP OVER-COMPRESSION

Advanced Beam Manipulation Techniques at SPARC

DEEP OVER-COMPRESSION

Techniques at SPARC

INTERNATIONAL PARTICLE

4[™] to 9[™] SEPTEMBER

ENERGY SEPARATION TUNABILITY

Advanced Beam Manipulation Techniques at SPARC

FOUR BUNCHES COMB BEAM: THZ RADIATION

Advanced Beam Manipulation Techniques at SPARC

FUTURE APPLICATIONS OF COMB BEAMS

Resonant plasma Oscillations by Multiple electron Bunches

• Weak blowout regime with resonant amplification of plasma wave by a train of high Brightness electron bunches produced by Laser Comb technique ==> 5 GV/m with a train of 3 bunches, 100 pC/bunch, 50 μ m long, 20 μ m spot size, in a plasma of density 10²² e⁻/m³ at λ_p =300 μ m

- Ramped bunch train configuration to enhance transformer ratio
- High quality bunch preservation during acceleration and transport

Advanced Beam Manipulation Techniques at SPARC

SPARC ENERGY UPGRADE

D. Alesini et al. SPARC-RF-11/002 (2011)

Advanced Beam Manipulation Techniques at SPARC

SPARC ENERGY UPGRADE: C-BAND SECTIONS

Cooling pipes

Cell Ra<0.05μm tolerances ±2μm

Tuning by deformation

Input coupler cumputer controlled milling machine

Ra<0.2 μ m tolerances ±10 μ m

Output coupler: Electro discharge machining Ra<1.2µm tolerances ±20µm

D. Alesini et al. SPARC-RF-11/002 (2011).

Advanced Beam Manipulation Techniques at SPARC

SPARC ENERGY UPGRADE: C-BAND SECTIONS

Advanced Beam Manipulation Techniques at SPARC

HIGH POWER TEST OF C-BAND PROTOTYPE

1.5 month long tests @ KEK

D. Alesini et al., SPARC-RF-11/005 (2011)

D. Alesini et al., MOPC013.

Advanced Beam Manipulation Techniques at SPARC

HIGH POWER TEST OF C-BAND PROTOTYPE

FLAME: A 300 TW TI:SA LASER

Advanced Beam Manipulation Techniques at SPARC

FLAME: A 300 TW TI:SA LASER

Advanced Beam Manipulation Techniques at SPARC

FLAME: A 300 TW TI:SA LASER

EM	1 F

Advanced Beam Manipulation Techniques at SPARC

NEAR FUTURE SPARC UPGRADE

Advanced Beam Manipulation Techniques at SPARC

ADVANCED BEAM MANIPULATION AT SPARC

Advanced Beam Manipulation Techniques at SPARC

EL PEINE DE LOS VIENTOS - COMB OF THE WIND

PUNTA TORREPEA, SAN SEBASTIAN