Paper | Title | Other Keywords | Page |
---|---|---|---|
MOMMU003 | Aperture Meter for the Large Hadron Collider | operation, optics, GUI, collimation | 70 |
|
|||
The control of the high intensity beams of the CERN Large Hadron Collider (LHC) is particular challenging and requires a good modeling of the machine and monitoring of various machine parameters. During operation it is crucial to ensure a minimal distance between the beam edge and the aperture of sensitive equipment, e.g. the superconducting magnets, which in all cases must be in the shadow of the collimators that protect the machine. Possible dangerous situations must be detected as soon as possible. In order to provide the operator with information about the current machine bottlenecks an aperture meter application was developed based on the LHC online modeling toolchain. The calculation of available free aperture takes into account the best available optics and aperture model as well as the relevant beam measurements. This paper describes the design and integration of this application into the control environment and presents results of the usage in daily operation and from validation measurements. | |||
Slides MOMMU003 [0.565 MB] | |||
Poster MOMMU003 [0.694 MB] | |||
MOPKS023 | An Overview of the Active Optics Control Strategy for the Thirty Meter Telescope | controls, optics, real-time, operation | 211 |
|
|||
Funding: This work was supported by the Gordon and Betty Moore Foundation The primary (M1), secondary (M2) and tertiary (M3) mirrors of the Thirty Meter Telescope (TMT), taken together, have over 10,000 degrees of freedom. The vast majority of these are associated with the 492 individual primary mirror segments. The individual segments are converted into the equivalent of a monolithic thirty meter primary mirror via the Alignment and Phasing System (APS) and the M1 Control System (M1CS). In this paper we first provide an introduction to the TMT. We then describe the overall optical alignment and control strategy for the TMT and follow up with additional descriptions of the M1CS and the APS. We conclude with a short description of the TMT error budget process and provide an example of error allocation and predicted performance for wind induced segment jitter. |
|||
Poster MOPKS023 [2.318 MB] | |||
MOPMN009 | First Experience with the MATLAB Middle Layer at ANKA | controls, EPICS, software, interface | 253 |
|
|||
The MATLAB Middle Layer has been adapted for use at ANKA. It was finally commissioned in March 2011. It is used for accelerator physics studies and regular tasks like beam-based alignment and response matrix analysis using LOCO. Furthermore, we intend to study the MATLAB Middle Layer as default orbit correction tool for user operation. We will report on the experience made during the commissioning process and present the latest results obtained while using the MATLAB Middle Layer for machine studies. | |||
Poster MOPMN009 [0.646 MB] | |||
WEMAU007 | Turn-key Applications for Accelerators with LabVIEW-RADE | controls, framework, LabView, software | 670 |
|
|||
In the accelerator domain there is a need of integrating industrial devices and creating control and monitoring applications in an easy and yet structured way. The LabVIEW-RADE framework provides the method and tools to implement these requirements and also provides the essential integration of these applications into the CERN controls infrastructure. We present three examples of applications of different nature to show that the framework provides solutions at all three tiers of the control system, data access, process and supervision. The first example is a remotely controlled alignment system for the LHC collimators. The collimator alignment will need to be checked periodically. Due to limited access for personnel, the instruments are mounted on a small train. The system is composed of a PXI crate housing the instrument interfaces and a PLC for the motor control. We report on the design, development and commissioning of the system. The second application is the renovation of the PS beam spectrum analyser where both hardware and software were renewed. The control application was ported from Windows to LabVIEW-Real Time. We describe the technique used for a full integration into the PS console. The third example is a control and monitoring application of the CLIC two beam test stand. The application accesses CERN front-end equipment through the CERN middleware, CMW, and provides many different ways to view the data. We conclude with an evaluation of the framework based on the three examples and indicate new areas of improvement and extension. | |||
Poster WEMAU007 [2.504 MB] | |||
WEPKS029 | Integrating a Workflow Engine within a Commercial SCADA to Build End User Applications in a Scientific Environment | GUI, controls, software, interface | 860 |
|
|||
To build integrated high-level applications, SOLEIL is using an original component-oriented approach based on GlobalSCREEN, an industrial Java SCADA [1]. The aim of this integrated development environment is to give SOLEIL's scientific and technical staff a way to develop GUI applications for beamlines external users . These GUI applications must address the 2 following needs : monitoring and supervision of a control system and development and execution of automated processes (like beamline alignment, data collections, and on-line data analysis). The first need is now completely answered through a rich set of Java graphical components based on the COMETE [2] library and providing a high level of service for data logging, scanning and so on. To reach the same quality of service for process automation, a big effort has been made to integrate more smoothly PASSERELLE [3], a workflow engine, with dedicated user-friendly interfaces for end users, packaged as JavaBeans in GlobalSCREEN components library. Starting with brief descriptions of software architecture of the PASSERELLE and GlobalSCREEN environments, we will then present the overall system integration design as well as the current status of deployment on SOLEIL beamlines.
[1] V. Hardion, M. Ounsy, K. Saintin, "How to Use a SCADA for High-Level Application Development on a Large-Scale Basis in a Scientific Environment", ICALEPS 2007 [2] G. Viguier, K. Saintin, https://comete.svn.sourceforge.net/svnroot/comete, ICALEPS'11, MOPKN016. [3] A. Buteau, M. Ounsy, G. Abeille, "A Graphical Sequencer for SOLEIL Beamline Acquisitions", ICALEPS'07, Knoxville, Tennessee - USA, Oct 2007. |
|||