Author: Betinelli-Deck, P.
Paper Title Page
MOCAUIO04 The SESAME Project 31
  • A. Nadji, S. Abu Ghannam, Z. Qazi, I. Saleh
    SESAME, Amman, Jordan
  • P. Betinelli-Deck, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
  • J.-F. Gournay
    CEA/IRFU, Gif-sur-Yvette, France
  • M.T. Heron
    Diamond, Oxfordshire, United Kingdom
  • H. Hoorani
    NCP, Islamabad, Pakistan
  • B. Kalantari
    PSI, Villigen, Switzerland
  • E. D. Matias, G. Wright
    CLS, Saskatoon, Saskatchewan, Canada
  SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is a third generation synchrotron light source under construction near Amman (Jordan), which is expected to begin operation in 2015. SESAME will foster scientific and technological excellence in the Middle East and the Mediterranean region, build scientific bridges between neighbouring countries and foster mutual understanding through international cooperation. The members of SESAME are currently Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority and Turkey. An overview about the progress of the facility and the general plan will be given in this talk. Then I will focus on the control system by explaining how this part is managed: the technical choice, the main deadlines, the local staff, the international virtual control team, and the first results.  
slides icon Slides MOCAUIO04 [8.526 MB]  
MOPMU040 REVOLUTION at SOLEIL: Review and Prospect for Motion Control 525
  • D. Corruble, P. Betinelli-Deck, F. Blache, J. Coquet, N. Leclercq, R. Millet, A. Tournieux
    SOLEIL, Gif-sur-Yvette, France
  At any synchrotron facility, motors are numerous: it is a significant actuator of accelerators and the main actuator of beamlines. Since 2003, the Electronic Control and Data Acquisition group of SOLEIL has defined a modular and reliable motion architecture integrating industrial products (Galil controller, Midi Ingénierie and Phytron power boards). Simultaneously, the software control group has developed a set of dedicated Tango devices. At present, more than 1000 motors and 200 motion controller crates are in operation at SOLEIL. Aware that the motion control is important in improving performance as the positioning of optical systems and samples is a key element of any beamline, SOLEIL wants to upgrade its motion controller in order to maintain the facility at a high performance level and to be able to answer to new requirements: better accuracy, complex trajectory and coupling multi-axis devices like a hexapod. This project is called REVOLUTION (REconsider Various contrOLler for yoUr moTION).  
poster icon Poster MOPMU040 [1.388 MB]  
WEMMU004 SPI Boards Package, a New Set of Electronic Boards at Synchrotron SOLEIL 687
  • Y.-M. Abiven, P. Betinelli-Deck, J. Bisou, F. Blache, F. Briquez, A. Chattou, J. Coquet, P. Gourhant, N. Leclercq, P. Monteiro, G. Renaud, J.P. Ricaud, L. Roussier
    SOLEIL, Gif-sur-Yvette, France
  SOLEIL is a third generation Synchrotron radiation source located in France near Paris. At the moment, the Storage Ring delivers photon beam to 23 beamlines. Since machine and beamlines improve their performance, new requirements are identified. On the machine side, new implementation for feedforward of electromagnetic undulators is required to improve beam stability. On the beamlines side, a solution is required to synchronize data acquisition with motor position during continuous scan. In order to provide a simple and modular solution for these applications requiring synchronization, the electronic group developed a set of electronic boards called "SPI board package". In this package, the boards can be connected together in daisy chain and communicate to the controller through a SPI* Bus. Communication with control system is done via Ethernet. At the moment the following boards are developed: a controller board based on a Cortex M3 MCU, 16bits ADC board, 16bits DAC board and a board allowing to process motor encoder signals based on a FPGA Spartan III. This platform allows us to embed process close to the hardware with open tools. Thanks to this solution we reach the best performances of synchronization.
* SPI: Serial Peripheral Interface
slides icon Slides WEMMU004 [0.230 MB]  
poster icon Poster WEMMU004 [0.430 MB]  
WEPMS026 The TimBel Synchronization Board for Time Resolved Experiments at Synchrotron SOLEIL 1036
  • J.P. Ricaud, P. Betinelli-Deck, J. Bisou, X. Elattaoui, C. Laulhé, P. Monteiro, L.S. Nadolski, S. Ravy, G. Renaud, M.G. Silly, F. Sirotti
    SOLEIL, Gif-sur-Yvette, France
  Time resolved experiments are one of the major services that synchrotrons can provide to scientists. The short, high frequency and regular flashes of synchrotron light are a fantastic tool to study the evolution of phenomena over time. To carry out time resolved experiments, beamlines need to synchronize their devices with these flashes of light with a jitter shorter than the pulse duration. For that purpose, Synchrotron SOLEIL has developed the TimBeL board fully interfaced to TANGO framework. This paper presents the main features required by time resolved experiments and how we achieved our goals with the TimBeL board.  
poster icon Poster WEPMS026 [1.726 MB]