Keyword: Ethernet
Paper Title Other Keywords Page
S02SRU05 Replacement of the ISIS Control System controls, software, hardware, interface 71
 
  • R.P. Mannix, C.J. Barton, D.M. Brownless, J.C. Kerr
    RAL, Chilton, Didcot, Oxon, United Kingdom
 
  In operation since 1985, ISIS is the world’s most powerful pulsed spallation neutron source. The decision has been taken to replace the existing ISIS control system, which has been in use for over ten years. The problems of such a project, given the legacy of processor specific hardware and software are discussed, along with the problems associated with incorporating existing interface hardware into any new system. Present progress using commercial workstation based control software is presented with, an assessment of the benefits and pitfalls of such an approach.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S02SRU05  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S02SRU10 The New Control System for TARN-2 controls, network, interface, synchrotron 93
 
  • S. Watanabe, J. Yoshizawa, T. Katayama
    INS, Tokyo, Japan
  • K. Aoki, K. Ohnishi
    SHI, Tokyo, Japan
 
  The new control system for the cooler-synchrotron, TARN-2, is described. The new control system consists of OPU’s (work stations) and EXU (control computer) linked with the local area network. The text message is used to transfer the control commands and their results. The control program CSA90 at EXU decodes the text message and executes it with the aid of the interface and periodic control subroutines. Both subroutines use common sharable image composed of the status, values, parameters and so on. The CAMAC, GPIB and RS232C are standard interface at EXU.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S02SRU10  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S03SRD12 Design of SPring-8 Control System controls, network, synchrotron, real-time 151
 
  • T. Wada, T. Kumahara, H. Yonehara, H. Yoshikawa, T. Masuda, W. Zhen
    JAERI-RIKEN/Spring-8 Project Team, Tokyo, Japan
 
  The control system of SPring-8 facility is designed. A distributed computer system is adopted with a three-hierarchy levels. All the computers are linked by computer networks. The network of upper level is a high-speed multi-media LAN such as FDDI which links sub-system control computers, and middle are Ethernet or MAP networks which link front end processors (FEP) such as VME system. The lowest is a field level bus which links VME and controlled devices. Workstations (WS) or X-terminals are useful for man-machine interfaces. For operating system (OS), UNIX is useful for upper level computers, and real-time OS’s for FEP’s. We will select hardwares and OS of which specifications are close to international standards. Since recently the cost of software has become higher than that of hardware, we introduce computer aided tools as many as possible for program developments.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S03SRD12  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S03SRD14 Control System for HIMAC Synchrotron controls, power-supply, synchrotron, timing 156
 
  • T. Kohno, K. Sato, E. Takada, K. Noda, A.I. Itano, M. Kanazawa, M. Sudou, K. Asami, R. Azumaishi, Y. Morii, N. Tsuzuki, H. Narusaka, Y. Hirao
    NIRS, Chiba-shi, Japan
  • K. Asami, R. Azumaishi
    Hitachi, Ltd., Ibaraki-ken, Japan
  • Y. Morii
    TMEIC, Tokyo, Japan
  • N. Tsuzuki
    Toshiba Mitsubishi Electric Industrial Systems Corporation, Tokyo, Japan
  • H. Narusaka
    DEC-Japan, Tokyo, Japan
 
  A control system for HIMAC synchrotron has been designed. The system consists of a main computer, console workstations, a few small computers and VME-computers connected via Ethernet. The small computers are dedicated to the control of an injection line, an extraction line and an RF system. Power supplies in main rings are controlled by the VME-computers through FDI/FDO, DI/DO modules. This paper describes an overview of the synchrotron control system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S03SRD14  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S05SRN05 A Control System of the Nobeyama Millimeter Array controls, software, interface, status 214
 
  • K.I. Morita, H. Iwashita, T. Kanzawa, T. Takahashi
    NAO-NRO, Minamisaku, Nagano, Japan
 
  We have developed a control system of the Nobeyama Millimeter Array which is a radio interferometer for as­tronomical observations at millimeter wavelengths. The system consists of three sub-systems (MANAGER, EN­GINE, and STATUS CONTROLLER). Observers conduct their observations with MANAGER sub-system, which run on a UNIX workstation. ENGINE is a rigid system on an IBM compatible mainframe. It controls the accurate tracking of astronomical radio objects, and acquires a large amount of observed data from a receiver backend. STA­TUS CONTROLLER consists of several personal comput­ers which control and monitor the receiver system. These sub-systems are connected with an ethernet.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S05SRN05  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S05SRN10 Hard-and Software for Measurement and Control of the Pulse Thermonuclear Installation controls, software, hardware, experiment 235
 
  • V.V. Bulan, V.M. Chikovsky, E.I. Dudorova, A.V. Kartashev, Yu.N. Lusin, A.I. Nebogin, G.M. Oleinik, Yu.V. Papazyan, V.H. Savochkin, V.P. Smirnov, V.I. Zaitsev
    I.V. Kurchatov Institute of Atomic Energy, Troitsk, Russia
 
  This paper describes control and measuring sys­tems of the pulse thermonuclear installation "Angara­-5". The "Angara-5" operates in a monopulse mode. It takes a long time to prepare the installation to the work shot. The main information flow about the in­stallation output parameters and the target processes comes for 10-7-10-8 sec. The measuring-control equipment has a multi-level hierarchy structure where the lower level is local systems controlled by own computers. Measuring systems contain waveform digitizers of different types. The supervisor console system realizes the communications with the local systems, as well as the data acquisition, processing and storage. Hardware and software structures are given. Careful equipment shielding and grounding have provided level of noise 30 mV. Fast signals processing features are discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S05SRN10  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S08NC04 Synchronous Message-Based Communication for Distributed Heterogeneous Systems network, controls, real-time, distributed 302
 
  • N.A. Wilkinson
    TRIUMF, Vancouver, Canada
  • D. Dohan
    SSCL, Dallas, TX, USA
 
  The use of a synchronous, message-based real-time operating system (Unison) as the basis of transparent interprocess and inter-processor communication over VMEbus is described. The implementation of a synchronous, message-based protocol for network communication between heterogeneous systems is discussed. In particular, the design and implementation of a message-based session layer over a virtual circuit transport layer protocol using UDP /IP is described. Inter-process communication is achieved via a message-based semantic which is portable by virtue of its ease of implementation in other operating system environments. Protocol performance for network communication among heterogeneous architectures is presented, including VMS, Unix, Mach and Unison.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S08NC04  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S08NC08 Network Communication Libraries for the Next Control System of the KEK e⁻/e⁺ Linac controls, network, linac, power-supply 318
 
  • N. Kamikubota, I. Abe, K. Furukawa, K. Nakahara
    KEK, Ibaraki, Japan
 
  The network communication libraries for the next control system of the KEK Linac have been developed. They are based on TCP/IP sockets, and show high availability among the different operating systems: UNIX, VAX/VMS, and MS-DOS. They also show high source portability of application programs among the different computer systems provided by various vendors. The performance and problems are presented in detail.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S08NC08  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S12FC03 Smart Machine Protection System controls, interface, operation, software 420
 
  • S. Clark, S. Allison, A.A. Grillo, T. Gromme, D.A.W. Hutchinson, H. Kang, D. Millsom, D. Nelson, J.D. Olsen, N.C. Spencer, K.K. Underwood, G.R. White, S. Zelazny
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.
A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerator to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is compiled into a logical decision tree for the 68030 processor.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S12FC03  
About • Received ※ 02 December 1991 — Accepted ※ 02 January 1992 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S12FC06 A Position Feedback Control System for the Test Facility of JLC controls, alignment, feedback, laser 431
 
  • N. Ishihara
    KEK, Ibaraki, Japan
  • K. Ishihara, T. Kubota, S. Nakabayashi, K. Yasuda
    KHI, Kobe, Japan
 
  In order to develop an alignment system for the Japan Linear Collider(JLC), we have constructed a test facility to study the position control system with multiple degrees of freedom for massive load. Noticeable points of the test facility are as follows. (1) Feedback fine alignment system which consists of piezoelectric actuators and laser interferometers. (2) High-speed controller using VME modules. (3) Level positioner driven by stepping motors. The controller can easily be connected with other computers by using RS-232C or Ethernet, so that their states such as positions can be monitored by another computer system. This facility achieves the alignment of multi-degrees of freedom with the accuracy of the order of submicron.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S12FC06  
About • Received ※ 02 December 1991 — Accepted ※ 02 January 1992 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)