
Synchronous Message-Based Communication For Distributed 
Heterogeneous Systems 

Abstract 

N. Wilkinson 
TRIUMF 

4004 Wesbrook Mall 

Vancouver, B.C 

Canada V6T 2A3 

The use of a synchronous, message-based real-time oper
ating system (Unison) as the basis of transparent inter
process and inter-processor communication over VME
bus is described. The implementation of a synchronous, 
message-based protocol for network communication be
tween heterogeneous systems is discussed. In particular, 
the design and implementation of a message-based ses
sion layer over a virtual circuit transport layer protocol 
using UDP /IP is described. Inter-process communication 
is achieved via a message-based semantic which is portable 
by virtue of its ease of implementation in other operating 
system environments. Protocol performance for network 
communication among heterogeneous architectures is pre
sented, including VMS, Unix, Mach and Unison. 

1 Introduction 
The use of domain-driven object modeling techniques in 
the specification of the KAON Factory Control System[l] 
was in contrast to the more. traditional emphasis on im-

. plementation and technology details and the consequent 
imposition of the technology on the requirements. When 
these object-oriented methods were used to model the 
KAON Factory Control System and to allocate the re
quirements specification to processor units[2], a logical ar
chitecture was derived which consisted of a network of dis
tributed processors connected by two specialized commu
nications buses: the control bus, a fast communication link 
responsible for the deterministic transport of control infor
mation and the data bus, a wide bandwidth link responsi
ble for non-deterministic, data-intensive communication. 

Since no generic processor platform can economi
cally perform all of the functions required, the distributed 
network of computing platforms utilized by the KAON 
Factory Central Control System (KF CCS) will be non
homogeneous and will undoubtedly consist of both real
time and non real-time platforms. It is therefore impor
tant that a consistent software architecture be employed 
to implement communication among these platforms. 

2 Message Based Architecture 
The message-based semantic is a candidate for implement
ing the transparent, high performance inter-process and 

D. Dohan 
SSC 

2550 Beckleymeade Avenue 

Dallas, Texas 

USA 75237 

inter-processor communication required for the KF CCS. 
Message passing can elegantly encapsulate both task syn
chronization and data transfer into a small set of simple 
primitives having well-defined semantics[3). Since a mes
sage header can identify a particular method to be used 
by a task instance, the use of the message-based semantic 
provides a convenient means of implementing an object
oriented architecture in a distributed environment. 

In the synchronous message-based semantic, three 
primitives are employed for inter-process communication 
and synchronization: send(}, receive(} and reply(). 

The send primitive implements the dispatch of a 
message to a destination task followed by the receipt of 
a reply from that task. Once it has called the send prim
itive, a task remains blocked until the receipt of a reply 
from the destination task. 

The receive primitive is used to receive messages 
from other tasks and, typically, to wait for signals from in
terrupt service routines. Tasks which use the receive primi
tive remain blocked until a message or signal arrives, or un
til a user-determined timeout occurs. The use of the receive 
primitive for the receipt of both messages and signals at a 
single point of execution considerably simplifies the struc
ture and design of tasks which must simultaneously deal 
with external events and communicate with other tasks. 

The reply primitive is non-blocking. It is used by 
tasks, such as servers, which cannot block while dispatch
ing a message. A reply is always made to a task which has 
used the send primitive to send a message to a given task 
and is waiting for that task to reply. 

Task synchronization is implicit in the communica
tions primitives employed. For instance, a sert1er object 
should never block when posting a message to another 
task. For this reason, servers employ the receive primitive 
to receive messages from clients and the reply primitive 
to respond to clients. Courier objects are used to carry 
messages between servers, as a server would block if it em
ployed the send primitive to communicate directly with 
another server. 

A synchronous message-based semantic may be con
structed from the more primitive inter-process communica
tions semantics offered by operating systems such as VMS 
or VxWorks, or it may be obtained as the native semantic 

302 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S08NC04

S08NC04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

302 Network and Communication



ISO/OSI 

7 Application INTERNET 

6 Presentation 5 Application 

5 Session 

4 Transport 4 Transport 

3 Internet 

3 Network 

2 Network interface 
2 Doto link 

1 Physical hardware 1 Hardware 

Figure 1: Protocol Stacks 

of message-based operating systems, such as the Harmony 
real-time kernel. For instance, the Unison real-time oper
ating system from Multiprocessor Toolsmiths implements 
the synchronous message-based semantic using the native 
semantics of the Reliant kernel, a commercial variant of 
Harmony, or as a messaging layer added to the pSOS+ 
real-time kernel. 

3 Network Architecture 
Common to all modern network protocols is the separa
tion of logical elements of the protocol into several layers. 
The five layer Internet protocol stack and the seven layer 
ISO/OSI protocol stack are illustrated in Figure 1. 

Proponents of the Internet suite of protocols, which 
has been widely implemented in the Unix and other do
mains, claim that it is the de-facto network standard. In 
the realm of networked real-time operating systems, the 
Internet protocol suite is almost exclusively used. 

3.1 Potential Implementations 
Ethernet, the IBM token ring and emerging technologies 
such as the Fibre Distributed Data Interface (FDDI), are 
prime candidates for implementation of control and/or 
data bus architectures. FDDI, with its high bandwidth 
and deterministic response, could perform both control and 
data bus functions. In some situations, provided that its 
bandwidth and non-deterministic response is acceptable, 
ethernet could be used for both functions at a consider
ably lower cost. 

3.2 Transport Layer Issues 
The Internet virtual circuit transport layer protocol, TCP, 
employs a sliding window protocol. When used for real
time control on an unreliable network, this protocol may 
exacerbate non-deterministic response due to the retrans
mission of unnecessary data segments. In addition, since 
a sliding window protocol transmits a number of segments 
before waiting for an acknowledge, unacceptable time de
lays may be introduced in waiting for urgent control in-

formation to be acknowledged. For this reason, the more 
rudimentary UDP transport protocol, which implements 
the unreliable transfer of datagrams, is preferable. How
ever, the use of UDP requires additional transport layer 
functionality in order to ensure the reliable transfer of 
datagrams. 

3.3 Session/Presentation Layer Issues 
As shown on Figure 1, the Internet protocol stack has no 
session layer. For the reasons described in Section 2, a 
session layer employing a synchronous message-based se
mantic is considered desirable. 

The Internet protocol stack also lacks a presenta
tion layer. For a message-based session layer, the critical 
presentation layer service is one which ensures that the 
representation of data is the same regardless of the plat
form employed. The use of such a service ensures that a 
distributed network of heterogeneous processors can un
derstand each other's messages. The External Data Rep
resentation (XDR), which has been designated RFB1014 
by the ARPA Network Information Center, provides the 
required presentation layer functionality. 

4 The Socket Server 
During the KAON Factory Project Definition Study, a ses
sion layer protocol for network communication was devel
oped which implements network communication using a 
synchronous, message-based semantic. In addition, a reli
able virtual circuit transport layer which does not employ 
a multiple segment sliding window protocol was developed 
over UDP. This protocol suite is known collectively as the 
socket server[4] and consists of three co-operating objects 
which communicate via a synchronous message-based se
mantic. 

The session layer of the socket server is embod
ied in the sockeLserver task and a reliable virtual circuit 
transport layer is embodied in multiple paired instances 
of socket-task and recvfrom_task. Socket server clients use 
the ss_open primitive to open a network connection and the 
ss-close primitive to close a network connection. Once a 
connection is open, socket server clients communicate with 
each other via the synchronous, message-passing primitives 
ss-send, ss_receive and ss_reply. 

The socket server has been successfully implemented 
on Unison, VMS, Mach and SunOS1 platforms. Ethernet 
message-passing performance between a Unison platform 
and VMS, NeXt/Mach and SunOS platforms has been 
measured. ·Socket server ports to RISC platforms are forth-
coming. 

5 Performance Evaluation 
The hardware configuration of Figure 2 has been used to 
evaluate socket server performance. The transceiver fan
out was used to connect two or more systems for perfor
mance measurements. The VMEbus Unison platform con
sisted of a 25 MHz Motorola 68030 processor board and a 

1 Sun 3/60 

303 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S08NC04

Network and Communication

S08NC04

303

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



<fl 

Other 
computers 

Site Ethernet 

VMEbus 
Processors 

(UNISON) 

I 
t L __ 

Sun J/60 Test 
(Unix) Platform 

Figure 2: Equipment Block Diagram 

80000-t-~~~~~~~~~~~~~u-n-ix_~o-02_8_6_1r 

Sot Apr 13 13:16;15 1991 
Elapsed time = 1096 sec 

60000 
Num xi er s 100000 

UNISON timeout = 100 msec 
UNIX timeout 100 msec 

Transfer statistics (msec) 

§ 40000 
Mox = 196.25 

Min = 4.25 
Meon = 5.033613 

Median = 4.75 
Std devn = 3.286174 

0 
(..) 

20000 

0-1-~_.,......!...L.J..,.L..I::::l=.~~-.-.~~~~~~..--~-+-

3 4 5 6 7 8 9 10 11 
Transfer Time in Milliseconds 

Figure 3: Four Byte Message Transfer Times 

low-cost ethemet processor equipped with a 10 MHz Mo
torola 68010 processor. The Sun 3/60 served as the soft
ware development host for the Unison system and was the 
first test platform for the socket server performance. 

Round-trip message transfer times were measured 
by the Unison client, which communicated with the non
Unison client using the ss..send primitive. The Unison 
client also employed ss..send to periodically transfer the 
acquired data to the non-Unison client for storage in a 
file. The one-way message transfer time was taken as half 
of the round-trip time. Figure 3 illustrates a typical his
togram of one-way message transfer times obtained during 
performance tests for a Sun 3/60.2 

For the purpose of performance measurement, only 
the Unison platform used the native synchronous messag
ing primitives for inter-process communication among the 
socket server tasks. The VMS, Mach and SunOS plat
forms were evaluated using a single-threaded variant of 
the socket server which emulated message passing using 
message copying and function calls. 

2The 10 millisecond bin of Figure 3 contains the sum of all counts 
for which the one-way message transfer time was 10 milliseconds or 
longer. 

18 

~ 16 
<fl 

E 
...._. 14 
ID 

E 12 i= 
.... 
ID 10 -x 
c 8 0 
'a 
ID 

;::!; 6 

4 
0 

• 
"' + 
0 
Cl 

VAXstotion 2000 
VAX 8650 
VAXstotion 3100 M76 
Next (68040) 
Sun 3/60 ... 

. .r,· .•. 

.•· 

200 400 600 800 
Message Size (bytes) 

Figure 4: Socket Server Performance 

6 Results 

1000 

Figure 4 presents graphs of message size versus median 
transfer time for each configuration tested.3 For each set 
of points, the data was fitted to a line, which is also shown 
on Figure 4. Since the Unison platform was common to all 
measurements, Figure 4 shows the relative performance of 
the non-Unison platforms tested. Figure 4 indicates that 
the NeXt platform obtained the best performance for small 
message sizes. However, for message sizes greater than 
about 200 bytes, the Sun 3/60 performance was superior 
to all others. The VAXstation 3100 M76 and the NeXt 
platform were quite similar in performance, despite the 
large difference in their costs. 

As only the round-trip transfer time was measured, 
it is impossible to separate the Unison and non-Unison pro
tocol overheads. However, the round-trip transfer time was 
recently measured between the Sun 3/60 platform and a 
high performance Unison platform using a single 25 MHz 
Motorola 68030 processor with on-board ethernet. The 
median transfer time between these platforms showed an 
improvement of only 0.75 milliseconds as compared to the 
transfer time measured between the Sun 3/60 and the two
processor Unison platform which was employed for the rest 
of the tests. This suggests that the low performance eth
emet processor in the two-processor Unison platform does 
not make a significant contribution to protocol overheads. 
The Unison overheads will be established by a forthcoming 
measurement of the round-trip transfer times between two 
identical Unison platforms. 

Table 1 presents the median message transfer rates 
for each platform tested. The NeXt achieved the high
est message transfer rate of 250 messages/second for 4 
byte messages. An ethemet implementation of the con
trol bus would be limited to this i:na.ximum message trans
fer rate for present day CISC processors. However, a 
performance improvement is anticipated upon completion 
of the forthcoming socket server port to RISC platforms 

3 The median transfer time has been chosen 1111 it provides a better 
indication of the peak on the corresponding histogram. 

304 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S08NC04

S08NC04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

304 Network and Communication



Data transfer rate 
Platform (messages/second) 

4 byte 1018 byte 
messages messages 

VAXstation 2000 93 53 
VAX 8650 148 60 

VAXstation 3100 M76 211 82 
NeXt 250 83 

Sun 3/60 211 105 

Table 1: Median Message Transfer Rates 

(SPARCstation, DECstation). Although ethernet is non
deterministic, the histogram of Figure 3 is sharply peaked 
at the median transfer time. Very few one-way transfers 
required more than 6 milliseconds and the maximum trans
fer time was 196 milliseconds. Provided that the ethernet 
bandwidth is adequate and that ethernet saturation can 
be avoided, this level of determinism may be acceptable 
for some control bus applications. 

Table 2 presents the median data transfer rates ob
tained for each platform. For a 1018 byte message, the 
data transfer rate for the Sun 3/60 platform was in excess 
of 100 kbytes/second. If ethernet were employed for the 
data bus, the maximum data rate would be of the order of 
100 kbytes/second for CISC platforms. It is expected that 
superior data. transfer performance would be obtained if 
the socket server employed a multiple segment sliding win
dow protocol (TCP) for data bus transfers and reserved the 
non-sliding window protocol for control bus applications. 

Since it is suspected that the largest contribution 
to socket server protocol overheads is made by the non
Unison processor, the forthcoming socket server port to 
RISC platforms may considerably enhance socket server 
ethernet performance. However, FDDI is the prime can
didate for truly high performance control and data bus 
applications.4 Due to its redundant counter-rotating to
ken ring scheme, FDDI is both reliable and determinis
tic. Since the FDDI standard incorporates a layered soft
ware and hardware architecture, it will easily accommo
date change and platform heterogeneity. 

7 Conclusion 
The socket server is well suited for communication among 
distributed heterogeneous systems. For instance, the syn
chronous message-based semantic has recently been ported 
to VMS platforms and this enables a multi-process VMS 
socket server. Since the socket server uses Unison messag
ing primitives, it will function in both the Unison/Reliant 
and the Unison/pSOS+ environments. A socket server 
port to the VxWorks real-time operating system is also 
anticipated. 

4 A Unison TCP /IP and UDP /IP port to FDDI is anticipated by 
Fourth Quarter thls year. 

Data transfer rate 
Platform (kbytes/second) 

4 byte 1018 byte 
messages messages 

VAXstation 2000 0.36 53 
VAX 8650 0.58 59 

VAXstation 3100 M76 0.82 81 
NeXt 0.98 83 

Sun 3/60 0.82 105 

Table 2: Median Data Transfer Rates 

If the protocol overheads of a layered network im
plementation are unacceptable and present day technology 
must be employed, the KF CCS control and data buses 
must be implemented using custom/proprietary systems. 
Such systems may be networked systems using custom 
hardware and software, they may be distributed shared 
memory systems or they may be hybrid shared mem
ory /networked systems. In general, such systems are more 
awkward to implement and expensive to maintain because 
they do not easily accommodate change. In addition, typ
ical custom/proprietary systems do not easily support an 
operational environment which consists of heterogeneous 
computing platforms. 

The ethernet socket server is suitable for control and 
data bus applications provided that its limitations (250 
messages/second, 100 kbytes/second, non-deterministic) 
are acceptable. If these limitations are not acceptable then 
RISC/FDDI socket server ports or custom systems are re
quired. 

References 

[l) C Inwood, G A Ludgate, D A Dohan, E A Os
berg, and S Koscielniak. "Domain-driven specifica
tion techniques simplify the analysis of requirements 
for the KAON factory central control system". Nu
clear Instruments and Methods in Physics Research, 
A293(1,2):390-393, 1990. 

[2] E A Osberg, G A Ludgate, S Koscielniak, and D A 
Dohan. "Dynamic object modelling as applied to 
the KAON control system". Nuclear Instruments and 
Methods in Physics Research, A293(1,2):394-401, 1990. 

[3) Peter J M Baker. "A programming paradigm based 
on the send-receive-reply task communication primi
tives". Master's thesis, Department of Electrical and 
Computer Engineering, University of Victoria, Victo
ria, B.C., Canada, 1988. 

[4] Neil A. Wilkinson. "Message-based network communi
cation between heterogeneous systems". KAON Fac
tory Project Definition Study TRI-DN-91-Kl64, TRI
UMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada 
V6T 2A3, June 1991. 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S08NC04

Network and Communication

S08NC04

305

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


