Keyword: linac
Paper Title Other Keywords Page
MOPA07 Beam Diagnostics and Instrumentation for Proton Irradiation Facility at INR RAS Linac electron, diagnostics, radiation, proton 40
 
  • S.A. Gavrilov, A.A. Melnikov, A.I. Titov
    RAS/INR, Moscow, Russia
 
  The new proton irradiation facility to study radiation effects in electronics and other materials has been built in INR RAS linac. The range of the specified intensity from 107 to 1012 protons per beam pulse is covered with three beam diagnostic instruments: current transformer, phosphor screen and multianode gas counter. The peculiarities of the joint use of the three instruments are described. The experimental results of beam parameters observations and adjustments are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPA07  
About • paper received ※ 04 September 2018       paper accepted ※ 14 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA12 The Design and Use of Faraday Cage in Linac Temporary Line of CSNS experiment, radiation, DTL, proton 48
 
  • M. Meng
    DNSC, Dongguan, People’s Republic of China
  • F. Li, P. Li, A.X. Wang, T.G. Xu
    IHEP, Beijing, People’s Republic of China
  • J.L. Sun
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  In the end of linac temporary line in csns, we need a faraday cage to absorb the beam. in the beam experiment it will be mounted and used twice. according to the beam energy and current of csns, we choose water-cooled pipe structure with tilted panel after simulation. the main principle of the faraday cage design is to simplify the structure and reduce the radiation activation of it, to do this, we also do the simulation of radiation. to make sure the faraday cage is safe in beam experiment, we alos plug in a pt100 Platinum resistance to monitor the temperature. after faraday cage is built and mounted on the line, it works well and sustain the beam bombardment.  
poster icon Poster MOPA12 [0.471 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPA12  
About • paper received ※ 03 September 2018       paper accepted ※ 14 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB03 High-Energy Scraper System for the S-DALINAC Extraction Beam Line - Commissioning Run experiment, extraction, dipole, quadrupole 75
 
  • L.E. Jürgensen, M. Arnold, T. Bahlo, C. Burandt, R. Grewe, J. Pforr, N. Pietralla, A. Rost, S. Weih, J. Wissmann
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
  • T. Kürzeder
    HIM, Mainz, Germany
 
  Funding: Funded by Deutsche Forschungsgemeinschaft under grant No. GRK 2128
The S-DALINAC is a thrice recirculating, superconducting linear electron accelerator at TU Darmstadt. It delivers electron beams in cw-mode with energies up to 130 MeV. The high-energy scraper system has been installed in its extraction beam line to reduce the energy spread and improve the energy stability of the beam for the experiments operated downstream. It comprises three scraper slits within a dispersion-conserving chicane consisting of four dipole magnets and eight quadrupole magnets. The primary scraper, located in a dispersive section, allows to improve and stabilize the energy spread. In addition energy fluctuations can be detected. Scraping of x- and y-halo is implemented in two positions enclosing the position of the primary scraper. We will present technical details and results of the first commissioning run of the recently installed system at the S DALINAC. Besides improving on the energy spread, it proved to be a valuable device to observe energy spread and energy fluctuations as well as to reduce background count rates next to the experimental areas.
 
poster icon Poster MOPB03 [2.824 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPB03  
About • paper received ※ 05 September 2018       paper accepted ※ 11 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA04 Analysis of Interlocked Events based on Beam Instrumentation Data at J-PARC Linac and RCS vacuum, detector, operation, instrumentation 219
 
  • N. Hayashi, S. Hatakeyama, A. Miura, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
 
  J-PARC is a multi-purpose facility. Accelerator stability is the one of important issues for users of this facility. To realize stable operation, we must collect data on interlocked events and analyze these data to determine the reasons for the occurrence of such events. In J-PARC Linac, data of interlocked events have been recorded using several some beam loss monitors and current monitors, and these data have been are analyzed and classified. In J-PARC RCS, new instrumentation is being introduced to obtain beam position. We discuss the present status and future plans related to this subject.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPA04  
About • paper received ※ 07 September 2018       paper accepted ※ 12 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB03 Results of SPIRAL2 Beam Position Monitors on the Test Bench of the RFQ operation, electron, rfq, electronics 261
 
  • M. Ben Abdillah, P. Ausset
    IPN, Orsay, France
  • R. Ferdinand
    GANIL, Caen, France
 
  SPIRAL2 project is based on a multi-beam superconducting LINAC designed to accelerate 5 mA deuteron beams up to 40 MeV, proton beams up to 33 MeV and 1 mA light and heavy ions (Q/A = 1/3) up to 14.5 MeV/A. The accurate tuning of the LINAC is essential for the operation of SPIRAL2 and requires measurement of the beam transverse position, the phase of the beam with respect to the radiofrequency voltage, the ellipticity of the beam and the beam energy with the help of Beam Position Monitor (BPM) system. The commissioning of the RFQ gave us the opportunity to install two BPM sensors, associated with their electronics, mounted on a test bench. The test bench is a D-plate fully equipped with a complete set of beam diagnostic equipment in order to characterize as completely as possible the beam delivered by the RFQ and to gain experience with the behavior of these diagnostics under beam operation. This paper addresses the measurements carried with the two BPMs on the Dplate: energy, transverse position and ellipticity under 750 KeV proton beam operation  
poster icon Poster TUPB03 [1.443 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB03  
About • paper received ※ 04 September 2018       paper accepted ※ 13 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB14 New Beam Position Monitors for the CERN LINAC3 to LEIR Ion Beam Transfer Line electron, simulation, solenoid, vacuum 293
 
  • L. Søby, G. Baud, M. Bozzolan, R. Scrivens
    CERN, Geneva, Switzerland
 
  The injection line into the CERN Low Energy Ion Ring (LEIR) has recently been equipped with nine, new, electrostatic Beam Position Monitors (BPMs) in order to measure and optimize the trajectory of the low intensity ion beams coming from LINAC3. In this paper, we describe the design of the BPM, the low noise charge amplifier mounted directly on the BPM, and the digital acquisition system. There is special emphasis on the first commissioning results where the measured beam positions were seen to be perturbed by EMI and charging of the BPM electrodes by secondary particles. The effect of mitigation measures, including repelling voltages on the electrodes and external magnetic fields, are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB14  
About • paper received ※ 03 September 2018       paper accepted ※ 13 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC07 First Results of Button BPMs at FRIB electron, electronics, MMI, pick-up 311
 
  • S. Cogan, J.L. Crisp, T.M. Ford, S.M. Lidia
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
Commissioning and tuning the linac driver for the Facility for Rare Isotope Beams (FRIB) requires a large network of warm and cryogenic BPMs, with apertures of 40 - 150 mm, sensitivity to beam currents of 100 nA to 1 mA, and accurate for beams with velocities as low as 0.03c. We present initial results of the BPM system, analog and digital signal processing, distortion and error correction, and calibration for time of flight (TOF) measurements. Measurements for low energy beams are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPC07  
About • paper received ※ 13 September 2018       paper accepted ※ 20 November 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA07 Beam Phase Measurement System in CSNS Linac DTL, rfq, electronics, MMI 386
 
  • P. Li, J. Peng
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • F. Li, T.G. Xu
    IHEP, Beijing, People’s Republic of China
  • M. Meng
    DNSC, Dongguan, People’s Republic of China
  • W. Peng
    CETC, Shushan, People’s Republic of China
 
  We developed beam phase measurement system ourselves in CSNS (China Spallation Neutron Source). The resolution of the system is less than 0.1° and the accuracy is less than 1°. It played a key role in CSNS Linac commissioning especially in RFQ and DTL commissioning. Further we measured the beam energy by TOF (Time of Flight) method base on this system. The energy accuracy is less than 0.1 MeV.  
poster icon Poster WEPA07 [1.070 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA07  
About • paper received ※ 04 September 2018       paper accepted ※ 13 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA16 Micro-Bunching Instability Monitor for X-ray Free Electron Laser radiation, electron, bunching, laser 404
 
  • C. Kim, H.-S. Kang, G. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J.H. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  A direct method was developed to measure the micro-bunching instability in the X-ray Free Electron Laser (XFEL). The micro-bunching instability comes from the interaction between the electron beam and the coherent synchrotron radiation (CSR), and the FEL intensity can be affected significantly by the micro-bunching instability. However, no effective method had been introduced to monitor the micro-bunching instability, so that we installed a CCD camera to measure the micro-bunching instability after the bunch compressor. The CCD camera showed the micro-bunching instability successfully, and more interesting features of the micro-bunching instability were revealed from it.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA16  
About • paper received ※ 09 September 2018       paper accepted ※ 11 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA19 Results from the CERN LINAC4 Longitudinal Bunch Shape Monitor cavity, MMI, electron, emittance 415
 
  • J. Tan, G. Bellodi
    CERN, Geneva, Switzerland
  • A. Feschenko, S.A. Gavrilov
    RAS/INR, Moscow, Russia
 
  The CERN Linac4 has been successfully commissioned to its nominal energy and will provide 160 MeV H ions for charge-exchange injection into the Proton Synchrotron Booster (PSB) from 2020. A complete set of beam diagnostic devices has been installed along the accelerating structures and the transfer line for safe and efficient operation. This includes two longitudinal Bunch Shape Monitors (BSM) developed by the Institute for Nuclear Research (INR, Moscow). Setting-up the RF cavities of Linac4 involves beam loading observations, time-of-flight measurements and reconstruction of the longitudinal emittance from phase profile measurements. In this paper the BSM is presented along with some results obtained during accelerator commissioning, including a comparison with phase measurements performed using the Beam Position Monitor system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA19  
About • paper received ※ 07 September 2018       paper accepted ※ 12 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB03 First Prototype of a Coronagraph-based Halo Monitor for BERLinPro diagnostics, SRF, operation, cavity 434
 
  • J.G. Hwang, J. Kuszynski
    HZB, Berlin, Germany
 
  Since particle losses by beam halo induced by space charge force and scattering of trapped ions are critical issues for superconducting-linac based high power machines such as BERLinPro, a halo monitor is demanded to monitor and control particle distribution at the level of 10-4 ~ 10-5 of the core intensity. A coronagraph-based halo monitor was adopted and the first prototype has been designed as a demonstrator system aimed at resolving a halo-core contrast in the 10-3 to 10-4 range. This monitor was tested at BESSY II with various operation modes such as Transverse Resonance Island Buckets (TRIBs) and Pulse-Picking by Resonant Excitation (PPRE). We show our design parameters, experimental criterion, and experimental results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB03  
About • paper received ※ 04 September 2018       paper accepted ※ 12 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC04 Setup for Beam Profile Measurements using Optical Transition Radiation target, radiation, electron, diagnostics 494
 
  • J. Pforr, M. Arnold, T. Bahlo, L.E. Jürgensen, N. Pietralla, A. Rost
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    KPH, Mainz, Germany
 
  Funding: Work supported by DFG through GRK 2128.
The S-DALINAC is a thrice-recirculating, superconducting linear electron accelerator at TU Darmstadt. It can provide beams of electrons with energies up to 130 MeV and currents of 20 µA. The accelerator performance was improved by an extension of the beam diagnostics, as this increases the reproducibility of the machine settings. Therefore, the installation of several beam profile measurement stations is planned, which should be operational down to a beam current of 100 nA, as this current is used for beam tuning. Combining these devices with a quadrupole scan also allows for emittance measurements. The beam profile measurements shall be done based on optical transition radiation (OTR), resulting from the penetration of relativistic electrons from vacuum into a metal target. The radiation can be detected using standard cameras that provide information on the two-dimensional particle distribution. This contribution will address the layout of the measurement stations and a first test measurement will be presented.
 
poster icon Poster WEPC04 [1.189 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC04  
About • paper received ※ 03 September 2018       paper accepted ※ 12 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC09 Design and Test Results of a Double-Slit Emittance Meter at XiPAF emittance, rfq, proton, space-charge 509
 
  • M.W. Wang, X. Guan, W.-H. Huang, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • M.T. Qiu, D. Wang, Z.M. Wang, C.Y. Wei
    NINT, Shannxi, People’s Republic of China
 
  Xi’an Proton Application Facility (XiPAF) is composed of a linac injector, a 230-MeV synchrotron and a high energy transport line. To study the beam dynamics along beamline, a double-slit emittance meter is used to measure beam phase space in the linac. To have knowledge of phase space upstream of the emittance meter, an inverse transport method is proposed in the presence of space charge. The design and preliminary test results of the emittance meter are shown in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC09  
About • paper received ※ 02 September 2018       paper accepted ※ 11 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)