Keyword: space-charge
Paper Title Other Keywords Page
WEOC04 Space Charge Effects Studies for the ESS Cold Linac Beam Profiler electron, simulation, proton, HOM 371
 
  • F. Belloni, P. Abbon, F. Benedetti, G. Coulloux, F. Gougnaud, C. Lahonde-Hamdoun, P. Le Bourlout, Y. Mariette, J. Marroncle, J.-Ph. Mols, V. Nadot, L. Scola
    CEA-DRF-IRFU, France
  • C.A. Thomas
    ESS, Lund, Sweden
 
  Five Ionization Profile Monitors are being built by CEA in the framework of the in-kind contribution agreement signed with ESS. The IPMs will be installed in the Cold Linac where the proton energy range they need to cover extends from 90 MeV to 2 GeV. The ESS fields intensity of 1.10+09 protons/bunch delivered at a frequency of 352 or 704 MHz, with a duty cycle of 4%, may strongly affect the trajectories of the ionized molecules and electrons created by the passage of the beam through the residual gas. In order to quantify and to develop a correction algorithm for these space charge effects, a code was initiated at ESS and completed at CEA Saclay with the possibility to include real case electric fields calculated with Comsol Multiphysics. A general overview of the code and its preliminary results are presented here.  
slides icon Slides WEOC04 [5.186 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEOC04  
About • paper received ※ 06 September 2018       paper accepted ※ 12 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA17 Development, Fabrication and Laboratory Tests of Bunch Shape Monitors for ESS Linac electron, dipole, quadrupole, target 407
 
  • S.A. Gavrilov, D.A. Chermoshentsev, A. Feschenko
    RAS/INR, Moscow, Russia
 
  Two Bunch Shape Monitors have been developed and fabricated in INR RAS for European Spallation Source linac. To fulfil the requirements of a 4 ps phase resolution the symmetric λ-type RF-deflector based on the parallel wire line with capacitive plates has been selected. Additional steering magnet to correct incline of the focused electron beam is also used. Limitations due to space charge of the analysed beam and due to external magnetic fields are discussed. The results of the laboratory tests of the monitors are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA17  
About • paper received ※ 04 September 2018       paper accepted ※ 11 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC09 Design and Test Results of a Double-Slit Emittance Meter at XiPAF emittance, rfq, linac, proton 509
 
  • M.W. Wang, X. Guan, W.-H. Huang, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • M.T. Qiu, D. Wang, Z.M. Wang, C.Y. Wei
    NINT, Shannxi, People’s Republic of China
 
  Xi’an Proton Application Facility (XiPAF) is composed of a linac injector, a 230-MeV synchrotron and a high energy transport line. To study the beam dynamics along beamline, a double-slit emittance meter is used to measure beam phase space in the linac. To have knowledge of phase space upstream of the emittance meter, an inverse transport method is proposed in the presence of space charge. The design and preliminary test results of the emittance meter are shown in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC09  
About • paper received ※ 02 September 2018       paper accepted ※ 11 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)