Keyword: instrumentation
Paper Title Other Keywords Page
MOPA01 Status Overview of the HESR Beam Instrumentation pick-up, proton, impedance, antiproton 26
 
  • C. Böhme, A.J. Halama, V. Kamerdzhiev, F. Klehr, B. Klimczok, M. Maubach, S. Merzliakov, D. Prasuhn, R. Tölle
    FZJ, Jülich, Germany
 
  The High Energy Storage Ring (HESR), within the Facility for Antiproton and Ion Research (FAIR), will provide proton and anti-proton beams for PANDA (Proton Antiproton Annihilation at Darmstadt) and heavy ion beams for SPARC (Stored Particles Atomic Physics Research Collaboration). With the beam instrumentation devices envisaged in larger quantities, e.g. BPM and BLM being in production, other BI instruments like Viewer, Scraper, or Ionization Beam Profile Monitor are in the mechanical design phase. An overview of the status is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPA01  
About • paper received ※ 12 September 2018       paper accepted ※ 14 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC11 Data Acquisition System for Beam Instrumentation of SXFEL and DCLS FEL, controls, laser, data-acquisition 137
 
  • Y.B. Yan
    SINAP, Shanghai, People’s Republic of China
  • J. Chen, L.W. Lai, Y.B. Leng, C.L. Yu, L.Y. Yu, H. Zhao, W.M. Zhou
    SSRF, Shanghai, People’s Republic of China
 
  The high-gain free electron lasers have given scientists hopes for new scientific discoveries in many frontier research areas. The Shanghai X-Ray Free-Electron Laser (SXFEL) test facility is commissioning at the SSRF campus. The Dalian Coherent Light Source (DCLS) has successfully commissioned in the northeast of China, which is the brightest vacuum ultraviolet free electron laser facility. The data acquisition system for beam instrumentation is based on EPICS platform. The field programmable gate array (FPGA) and embedded controller are adopted for the signal processing and device control. The high-level applications are developed using Python. The details of the data acquisition system will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPC11  
About • paper received ※ 29 August 2018       paper accepted ※ 11 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA04 Analysis of Interlocked Events based on Beam Instrumentation Data at J-PARC Linac and RCS linac, vacuum, detector, operation 219
 
  • N. Hayashi, S. Hatakeyama, A. Miura, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
 
  J-PARC is a multi-purpose facility. Accelerator stability is the one of important issues for users of this facility. To realize stable operation, we must collect data on interlocked events and analyze these data to determine the reasons for the occurrence of such events. In J-PARC Linac, data of interlocked events have been recorded using several some beam loss monitors and current monitors, and these data have been are analyzed and classified. In J-PARC RCS, new instrumentation is being introduced to obtain beam position. We discuss the present status and future plans related to this subject.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPA04  
About • paper received ※ 07 September 2018       paper accepted ※ 12 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB13 Stability Tests with Pilot-Tone Based Elettra BPM RF Front End and Libera Electronics electron, electronics, real-time, FPGA 289
 
  • M. Cargnelutti, P. Leban, M. Žnidarčič
    I-Tech, Solkan, Slovenia
  • S. Bassanese, G. Brajnik, S. Cleva, R. De Monte
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Long-term stability is one of the most important properties of the BPM readout system. Recent developments on pilot tone capable front end have been tested with an established BPM readout electronics. The goal was to demonstrate the effectiveness of the pilot tone compensation to varying external conditions. Simulated cable attenuation change and temperature variation of the readout electronics were confirmed to have no major effect to position data readout. The output signals from Elettra front end (carrier frequency and pilot tone frequency) were processed by a Libera Spark with the integrated standard front end which contains several filtering, attenuation and amplification stages. Tests were repeated with a modified instrument (optimized for pilot tone) to compare the long-term stability results. Findings show the pilot tone front end enables great features like self-diagnostics and cable-fault compensation as well as small improvement in the long-term stability. Measurement resolution is in range of 10 nanometers RMS in 5 Hz bandwidth.  
poster icon Poster TUPB13 [1.223 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB13  
About • paper received ※ 31 August 2018       paper accepted ※ 12 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB12 Design and Implementation of Non-Invasive Profile Monitors for the ESS LEBT HOM, ion-source, simulation, distributed 455
 
  • C.A. Thomas, T.J. Grandsaert, H. Kocevar, Ø. Midttun, N. Milas, R. Miyamoto, T.J. Shea
    ESS, Lund, Sweden
 
  Non-invasive Profile Monitors are designed and distributed along the ESS Linac. In the Low Energy Beam Transport (LEBT), a specific one has been designed to be primarily a beam position monitor. Its main requirement is to measure the beam position with 100µm accuracy, and in addition it provides the beam profile and size. This performance have been shown to be possible and remains to be demonstrated experimentally. The instrument is also potentially capable of measuring the angle of the beam and its divergence. In this paper we will study the accuracy of such a measurement as function of the instrument image quality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB12  
About • paper received ※ 05 September 2018       paper accepted ※ 12 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC16 Design and Radiation Simulation of the Scintillating Screen Detector for Proton Therapy Facility radiation, proton, photon, simulation 516
 
  • P. Tian, Q.S. Chen, K. Fan, J.Q. Li, K. Tang
    HUST, Wuhan, People’s Republic of China
 
  A proton therapy facility based on a superconducting cyclotron is under construction in Huazhong University of Science and Technology (HUST). In order to achieve precise treatment or dose distribution, the beam current would vary from 0.4 nA to 500 nA, in which case conventional non-intercepting instruments would fail due to their low sensitivity. So we propose to use a retractable scintillating screen to measure beam position and beam profile. In this paper, a comprehensive description of our new designed screen monitor is presented, including the choice of material of the screen, optical calibration and simulation of radiation protection. According to the off-line test, the resolution of the screen monitor can reach 0.13 mm/pixel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC16  
About • paper received ※ 05 September 2018       paper accepted ※ 11 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)