Keyword: data-acquisition
Paper Title Other Keywords Page
MOPG19 Diamond Monitor Based Beam Loss Measurements in the LHC detector, injection, software, instrumentation 82
 
  • C. Xu, B. Dehning, F.S. Domingues Sousa
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
 
  Two pCVD diamond based beam loss monitors (dBLM) are installed near the primary collimators of the LHC, with a dedicated, commercial readout-system used to acquire their signals. The system is simultaneously able to produce a high sampling rate waveform and provide a real-time beam loss histogram for all bunches in the machine. This paper presents the data measured by the dBLM system during LHC beam operation in 2016.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG19  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAL03 Diagnostic Data Acquisition Strategies at FRIB diagnostics, hardware, FPGA, software 572
 
  • S. Cogan, S.M. Lidia, R.C. Webber
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
Strategies for data acquisition and processing will be discussed in the context of the Facility for Rare Isotope Beams (FRIB). Design decisions include selecting and designing electronics hardware, data acquisition cards, firmware design, and how to integrate with EPICS control system. With over 300 diagnostic devices and 16 unique types of devices, timing for synchronous data acquisition is important. Strategies to accelerate development as well as reduce maintenance requirements will be dis-cussed, including using common hardware and firmware whenever possible, and defining a common data report-ing structure for use by most devices. MicroTCA.4 plat-form is used to integrate data acquisition cards, distribute timing information, and machine protection signals.
 
slides icon Slides WEAL03 [7.392 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEAL03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPG31 Upgrades to the LANSCE Isotope Production Facilities Beam Diagnostics electronics, diagnostics, isotope-production, target 690
 
  • H.A. Watkins, D. Baros, D. Martinez, L. Rybarcyk, J.D. Sedillo, R.A. Valicenti
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy. Contract No. DE-AC52-06NA25396
The Los Alamos Neutron Science Center (LANSCE) is currently upgrading the beam diagnostics capability for the Isotope Production Facility (IPF) as part of an Accelerator Improvement Project (AIP). Improvements to measurements of: beam profile, beam energy, beam current and collimator charge are under development. Upgrades include high density harps, emittance slits, wire-scanners, multi-segment adjustable collimator, data acquisition electronics and motion control electronics. These devices will be installed and commissioned for the 2017 run cycle. Details of the hardware design and system development are presented.
 
poster icon Poster WEPG31 [3.875 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG31  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPG74 Bridging the Gap; Updating LANSCE Digitizers emittance, linac, controls, distributed 822
 
  • D. Baros, J.D. Sedillo, H.A. Watkins
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy.
The Los Alamos Neutron Science Center (LANSCE) is currently upgrading equipment that is used to digitize transverse beam profile measurements. Emittance measurements were originally digitized using legacy equipment, known as RICE (Remote Indication and Control Equipment). This required 38 RICE modules distributed along the half-mile long accelerator simultaneously recording 4 channels each to populate the 76 data points needed to create a single emittance profile. The system now uses a National Instruments cRIO controller to digitize the entire profile in a single chassis. Details of the hardware selection and performance of the system for different timing structures are presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG74  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPG75 The Beam Profile Monitoring System for the CERN IRRAD Proton Facility proton, detector, operation, radiation 825
 
  • F. Ravotti, B. Gkotse, M. Glaser, E. Matli, G. Pezzullo
    CERN, Geneva, Switzerland
  • K.K. Gan, H. Kagan, S. Smith, J.D. Warner
    Ohio State University, Columbus, Ohio, USA
 
  Funding: Project funded by AIDA project and the EU H2020 Research and Innovation programme, GA n. 654168.
In High Energy Physics (HEP) experiments, devices are required to withstand high radiation levels. As a result, detectors and electronics sitting in the inner detector layers must be irradiated to determine their radiation tolerance. To perform these irradiations, CERN built during LS1 a new irradiation facility in the East Area at the Proton Synchrotron (PS) accelerator. At this facility, named IRRAD, a high-intensity 24 GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online. The IRRAD Beam Profile Monitor (BPM) uses a set of four 39-channel pixel detectors constructed using thin foil copper pads positioned on a flex circuit. When protons pass through the copper pads, they induce a measurable current. To measure this current a new data acquisition system was designed as well as a new database and on-line display system. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned upgrades, including its utilization for monitoring irradiations with an intense 300MeV/c positive pion beam at PSI.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG75  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)