Keyword: lattice
Paper Title Other Keywords Page
TU1B1 A Highly Competitive Non-Standard Lattice for a 4th Generation Light Source With Metrology and Timing Capabilities emittance, sextupole, operation, HOM 58
 
  • P. Goslawski, M. Abo-Bakr, J. Bengtsson, K. Holldack, Z. Hüsges, A. Jankowiak, K. Kiefer, B.C. Kuske, A. Meseck, R. Müller, M.K. Sauerborn, O. Schwarzkopf, J. Viefhaus, J. Völker
    HZB, Berlin, Germany
 
  The PTB, Germany’s national institute for standards and metrology, has relied on synchrotron radiation for metrology purposes for over 40 years and the most prominent customers are lithography systems from ASML/ZEIS. HZB is now working on a concept for a BESSY II successor, based on a 4th generation light source with an emittance of 100 pmrad @ 2.5 GeV. It is essential, that this new facility continues to serve the PTB for metrology purposes. This sets clear boundary conditions for the lattice design, in particular, the need for homogeneous bends as metrological radiation sources. Different Higher-Order-Multi-Bend-Achromat lattices have been developed, based on combined function gradient bends and homogeneous bends in a systematic lattice design approach. All lattices are linearly equivalent with the same emittance and maximum field strength. However, they differ significantly in their non-linear behavior. Based on this analysis, the choice of the BESSY III lattice type is motivated. A special focus is set also on TRIBs (Transverse Resonance Island Buckets) to operate with two orbits as a bunch separation scheme in MBAs, for different repetition rates or for the separation of short and long bunches.  
slides icon Slides TU1B1 [7.584 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU1B1  
About • Received ※ 23 August 2023 — Revised ※ 28 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1B3 Nonlinear Optics From Hybrid Dispersive Orbits sextupole, optics, quadrupole, storage-ring 62
 
  • Y. Li, R.S. Rainer, V.V. Smaluk, D. Xu
    BNL, Upton, New York, USA
 
  Funding: Supported by US DoE under Contract No. DE-SC0012704
In this paper we present an expansion of the technique of characterizing nonlinear optics from off-energy orbits (NOECO) to cover harmonic sextupoles in storage rings. The existing NOECO technique has been successfully used to correct the chromatic sextupole errors on the MAX-IV machine, however, it did not account for harmonic sextupoles, which are widely used on many other machines. Through generating vertical dispersion with chromatic skew quadrupoles, a measurable dependence of nonlinear optics on harmonic sextupoles can be observed from hybrid horizontal and vertical dispersive orbits. Proof of concept of our expanded technique was accomplished by simulations and beam measurements on the National Synchrotron Light Source II (NSLS-II) storage ring.
 
slides icon Slides TU1B3 [1.428 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU1B3  
About • Received ※ 18 August 2023 — Revised ※ 20 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU1B4 Minimizing the Fluctuation of Resonance Driving Terms for Analyzing and Optimizing the Storage Ring Dynamic Aperture sextupole, betatron, dynamic-aperture, resonance 66
 
  • Z.H. Bai, B.F. Wei
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • A. Loulergue, L.S. Nadolski, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  Minimization of resonance driving terms (RDTs) of nonlinear magnets such as sextupoles and octupoles is an essential condition for enlarging the dynamic aperture (DA) of a storage ring. We recently studied the correlation between minimizing the fluctuation or variation of RDTs along the ring and enlarging the DA. It was found that minimizing the RDT fluctuations is much more effective than minimizing the commonly-used one-turn RDTs in enlarging the DA, and that reducing low-order RDT fluctuations can also help reduce both higher-order RDT fluctuations and higher-order one-turn RDTs. In this paper, DA analysis based on minimizing RDT fluctuations is further extended. By considering the RDT fluctuations including low- and high-frequency fluctuations, some nonlinear dynamics issues can be explained. DA optimization is also studied based on numerically minimizing RDT fluctuations using genetic algorithms. Large DA can be obtained, and the optimization is performed very fast.  
slides icon Slides TU1B4 [3.118 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU1B4  
About • Received ※ 23 August 2023 — Revised ※ 28 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P26 Special Operational Modes for SLS 2.0 brightness, photon, emittance, quadrupole 127
 
  • J. Kallestrup, M. Aiba
    PSI, Villigen PSI, Switzerland
 
  The SLS 2.0 storage ring will achieve low emittance and high brightness while maintaining large dynamic aperture and lifetime comparable to the present SLS. Special operational modes are investigated to further explore the potential of the lattice. In this contribution, the first considerations on such modes for the SLS 2.0 are outlined. A promising high-brightness mode, increasing brightness by up to 25% at insertion devices with minor deterioration to dynamic and momentum aperture is presented. The use of round-beams and its impact on beam dynamics and the beamlines in the SLS 2.0 portfolio is discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P26  
About • Received ※ 27 July 2023 — Revised ※ 24 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P34 Recent Developments of the cSTART Project storage-ring, injection, electron, cavity 155
 
  • M. Schwarz, A. Bernhard, E. Bründermann, D. El Khechen, B. Härer, A. Malygin, A.-S. Müller, M.J. Nasse, G. Niehues, A.I. Papash, R. Ruprecht, J. Schäfer, M. Schuh, N.J. Smale, P. Wesolowski, C. Widmann
    KIT, Karlsruhe, Germany
 
  The combination of a compact storage ring and a laser-plasma accelerator (LPA) can serve as the basis for future compact light sources. One challenge is the large momentum spread (~ 2%) of the electron beams delivered by the LPA. To overcome this challenge, a very large acceptance compact storage ring (VLA-cSR) was designed as part of the compact STorage ring for Accelerator Research and Technology (cSTART) project. The project will be realized at the Karlsruhe Institute of Technology (KIT, Germany). Initially, the Ferninfrarot Linac- Und Test-Experiment (FLUTE), a source of ultra-short bunches, will serve as an injector for the VLA-cSR to benchmark and emulate LPA-like beams. In a second stage, a laser-plasma accelerator will be used as an injector, which is being developed as part of the ATHENA project in collaboration with DESY and the Helmholtz Institute Jena (HIJ). The small facility footprint, the large-momentum spread bunches with charges from 1 pC to 1 nC and lengths from few fs to few ps pose challenges for the lattice design, RF system and beam diagnostics. This contribution summarizes the latest results on these challenges.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P34  
About • Received ※ 21 August 2023 — Revised ※ 22 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE4P18 Preliminary Design of Higher-order Achromat Lattice for the Upgrade of the Taiwan Photon Source emittance, dipole, storage-ring, radiation 184
 
  • N.Y. Huang, M.-S. Chiu, P.J. Chou, G.-H. Luo, H.W. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  We study the upgrade of Taiwan Photon Source (TPS) with energy saving as the prime objective. The upgrade design is dubbed TPS-II. To accommodate the constraints imposed by the existing TPS tunnel, we choose the higher-order achromat (HOA) lattice configuration which is composed of the 5BA and 4BA cells. This HOA lattice produces a natural beam emittance about 131 pm-rad for a 3 GeV, 518.4 m storage ring. The on-momentum dynamic aperture is about 8 mm and the estimated Touschek life time reaches around 5.7 hours at total beam current of 500 mA. As a result of the ultralow beam emittance, the brightness and coherence fraction (CF) of the photon beam are improved with a factor of several tens especially in the photon wavelength around 0.1 nm. The challenges and preliminary results of this HOA lattice design will be presented.  
poster icon Poster WE4P18 [5.398 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P18  
About • Received ※ 21 August 2023 — Revised ※ 28 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE4P19 Simulation Study of Orbit Correction by Neural Network in Taiwan Photon Source network, storage-ring, synchrotron, photon 188
 
  • M.-S. Chiu, Y.-S. Cheng, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
  • C.P. Felix
    MCL/ITRI, Hsinchu, Taiwan
 
  Machine learning has been applied in many fields in re-cent decades. Many research articles also presented re-markable achievements in either operation or designing of the particle accelerator. This paper focuses on the simulated orbit correction by neural networks, a subset of machine learning, in Taiwan Photon Source. The training data for the neural network is generated by accelerator toolbox (AT).  
poster icon Poster WE4P19 [0.843 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P19  
About • Received ※ 23 August 2023 — Revised ※ 29 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE4P31 Deterministic Approach to the Lattice Design of BESSY III sextupole, emittance, quadrupole, dynamic-aperture 203
 
  • B.C. Kuske, P. Goslawski
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association
Since 2021 HZB pursues the design of a 2.5 GeV storage ring as a successor of BESSY II in Berlin. The user’s demand for diffraction-limited radiation at 1 keV corresponds to an emittance of 100 pm, making an MBA lattice indispensable. The envisaged location limits the circumference to ~350 m. MBA lattices are composed of smaller substructures that can be analyzed and optimized separately, before combining them into one super period. The prerequisite for this approach is a clear idea of the goal parameters and their prioritization, as the design process is dominated by permanent decisions between different options. The resulting generic baseline lattice for BESSY III is a simple structure with few non-linear elements, already fulfilling all goal parameters and showing a very compatible nonlinear behavior. This is our starting point for further optimizations including swarm or MOGA approaches.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P31  
About • Received ※ 30 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 01 September 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)