Paper | Title | Other Keywords | Page |
---|---|---|---|
MO2L3 | Review of Harmonic Cavities in Fourth-generation Storage Rings | cavity, storage-ring, electron, survey | 8 |
|
|||
Several third generation light-source storage rings have used harmonic cavities to lengthen the electron bunches. With the advent of the fourth generation however, they have become an almost universal feature as the small transverse electron beam sizes make long bunches essential for increasing Touschek lifetime and reducing emittance blow-up from intrabeam scattering. Multiple technological solutions exist for the implementation of harmonic cavities and which to use remains an open question for many facilities. This is therefore a very active area of study in which there is strong collaboration within the community. Avoiding coherent collective beam instabilities is of particular concern. In this talk, I will summarise the results obtained so far. I will also give an overview of the observations made at the MAX IV 3 GeV ring, the first fourth generation storage ring which was commissioned with normal-conducting passive harmonic cavities already installed. Finally, I will discuss potential future directions. | |||
![]() |
Slides MO2L3 [3.035 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-MO2L3 | ||
About • | Received ※ 24 August 2023 — Revised ※ 25 August 2023 — Accepted ※ 27 August 2023 — Issued ※ 02 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MO3B2 | Beam Dynamics Using Superconducting Passive Harmonic Cavities with High Current per Bunch | cavity, dipole, impedance, emittance | 14 |
|
|||
In 4th generation synchrotron light sources, harmonic cavities (HCs) are critical components needed to achieve the required performance. They provide longer bunches, which helps to reduce statistical effects (intra-beam scattering and Touschek effect). In "timing" modes, where the bunch spacing is larger than in conventional modes and the number of particles per bunch is higher, this need is even greater. In this article, we present the beam dynamics in the high current per bunch regime and how it interacts with the single bunch collective effects. In particular, a dipole-quadrupole instability is observed above the microwave threshold and a coupling between the dipole and cavity modes is shown to limit bunch lengthening at low current. The effective gain from the use of HCs in terms of lifetime, emittance, and energy spread is also discussed. | |||
![]() |
Slides MO3B2 [1.529 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-MO3B2 | ||
About • | Received ※ 13 August 2023 — Revised ※ 15 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MO3B3 | Bunch-lengthening RF System Using Active Normal-conducting Cavities | cavity, kicker, beam-loading, controls | 18 |
|
|||
Bunch lengthening using a double RF system (fundamental + harmonic cavities) is essential in preserving the extremely low emittance in fourth and future generation synchrotron light rings. Recent studies have revealed that, in many cases, unstable beam motions, as so-called "mode-0" and "periodic transient beam loading" instabilities, prevent from reaching the optimum bunch lengthening condition with low and high beam current, respectively, even in symmetric filling patterns. While reducing the R/Q is beneficial for the latter, it will worsen the former. To achieve an efficient bunch lengthening system, we proposed a promising solution based on a powered TM020-type harmonic cavity with RF feedbacks (RF-FBs)*, as reported at FLS2018. Based on this concept, we are developing both fundamental and harmonic cavities using the TM020 resonant mode**, a kicker cavity having a bandwidth >5MHz***, bunch-phase monitor (BPhM) and RF-FBs. In this presentation, we describe our overall bunch lengthening system including cavity and BPhM designs. We also present particle tracking simulation results demonstrating that the bunch lengthening limitations can be alleviated by means of direct RF-FBs****.
* N. Yamamoto et al., PRAB 21, 012001, 2018. ** T. Yamaguchi et al., accepted in NIM A. *** D. Naito et al, IPAC2021, MOPSB331, 2021. **** N. Yamamoto et al., IPAC23, WEPL161, 2023. |
|||
![]() |
Slides MO3B3 [2.655 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-MO3B3 | ||
About • | Received ※ 22 August 2023 — Revised ※ 23 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WE1L4 | Operating Liquid MetalJet X-ray Sources for Materials Research | experiment, detector, photon, optics | 159 |
|
|||
Even on the 100th anniversary of the death of Wilhelm Conrad Röntgen, the demand for applications of his discovery of X-rays is not diminishing. On the contrary, both academic and industrial research and development need X-ray generating devices with ever-improving properties more than ever to meet the current challenges of science and technology. For this reason, the development of next-generation synchrotrons is being driven forward and made available to users worldwide. Nevertheless, the availability of synchrotron beamtime will always remain limited, even with the most brilliant sources for ultra-fast and high-throughput experiments. That is why the operation of and research with decentralized laboratory equipment becomes just as important. This presentation will therefore focus on the latest developments in laboratory sources in the hard X-ray regime for materials research. In this context, Helmholtz-Zentrum Berlin (HZB) has commissioned EXCILLUM’s new high-flux MetalJet X-ray devices providing photon energies up to 70 keV and 160 keV, respectively. The presentation will give a summary of the technical specifications of these sources utilizing a liquid metal as anode material and the diffractometer lab installations operated with them at HZB. Selected experimental examples are shown providing an overview of applications performed at the MetalJet measuring stations - ranging from residual stress analysis on technical parts to real-time measurements on thin films for photovoltaics applying angle- and energy-dispersive diffraction as well as studies in the field of time-resolved imaging. A comparison to synchrotron measurements is made to benchmark the performance of the available setups. In conclusion, the effort and expenses required to operate such X-ray devices for in-house research and user service measurements are summarized. | |||
![]() |
Slides WE1L4 [3.423 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE1L4 | ||
About • | Received ※ 23 August 2023 — Revised ※ 29 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WE4P19 | Simulation Study of Orbit Correction by Neural Network in Taiwan Photon Source | network, storage-ring, lattice, photon | 188 |
|
|||
Machine learning has been applied in many fields in re-cent decades. Many research articles also presented re-markable achievements in either operation or designing of the particle accelerator. This paper focuses on the simulated orbit correction by neural networks, a subset of machine learning, in Taiwan Photon Source. The training data for the neural network is generated by accelerator toolbox (AT). | |||
![]() |
Poster WE4P19 [0.843 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P19 | ||
About • | Received ※ 23 August 2023 — Revised ※ 29 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WE4P20 | Alignment Results of Tandem EPUs at the Taiwan Photon Source | photon, electron, alignment, feedback | 192 |
|
|||
Taiwan Photon Source (TPS) has been open to user operation since 2016. We report the alignment results of tandem EPUs in one double mini-beta y long straight section. The goal is to increase the brilliance of the synchrotron lights produced by the tandem EPUs through well-alignment and using a phase shifter to achieve both spatial and temporal coherence. The calculated brilliance gain of the tandem EPUs is compared, and the difference between the measured and numerical results is analyzed. | |||
![]() |
Poster WE4P20 [4.435 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P20 | ||
About • | Received ※ 16 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TH1D4 | Bi-periodic Undulator: Innovative Insertion Device for SOLEIL II | undulator, electron, radiation, storage-ring | 228 |
|
|||
SOLEIL II project will lead to optimize the production of photons by a modification of the present facility. The storage ring will be redesigned to reduce electron beam emittance, increase photon beam flux and brightness, and improve beamline resolution. The number of magnetic elements will be increased and the space reserved for insertion devices will be decreased by 30%. SOLEIL magnetic group searches for solutions to generate different magnetic periods in a smaller space to maintain the full spectral domain. Bi-Periodic undulator is an innovative and compact device allowing the use of two selectable magnetic periodicities by superimposition of magnets. The magnetic period can be switched from one value to its triple value by mechanical shift of magnetic arrays. A magnetic design has been performed and the construction of a prototype, including magnetic measurements and corrections, is under progress. The prototype will be installed in the storage ring with the goal to verify the feasibility of the model and to characterize the system. The magnetic fields, the radiation produced and the electron beam dynamics will be considered to have a complete knowledge on this undulator. | |||
![]() |
Slides TH1D4 [2.442 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-TH1D4 | ||
About • | Received ※ 23 August 2023 — Revised ※ 26 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||