Keyword: injection
Paper Title Other Keywords Page
MO4B3 Development of a Pulsed Injection Stripline for Diamond-II simulation, impedance, kicker, storage-ring 38
 
  • R.T. Fielder, A. Lueangaramwong, A.F.D. Morgan
    DLS, Oxfordshire, United Kingdom
 
  Diamond-II will use a single bunch aperture sharing injection scheme. This applies a strong kick to both the injected and the targeted stored bunch with a very short duration (ideally <3 ns, if disturbance to the adjacent bunches is to be avoided). We have developed a design for the stripline kickers that can meet these requirements while minimising internal reflections and beam impedance. We show an analysis of the electric and magnetic fields produced by the stripline and simulations of the effects on injected and stored beam, and analysis of the wakefields and impedance of the structure.  
slides icon Slides MO4B3 [2.164 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-MO4B3  
About • Received ※ 21 August 2023 — Revised ※ 24 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P18 Nonlinear Dynamics Measurements at the EBS Storage Ring octupole, simulation, kicker, storage-ring 116
 
  • N. Carmignani, L.R. Carver, L. Hoummi, S.M. Liuzzo, T.P. Perron, S.M. White
    ESRF, Grenoble, France
 
  The EBS is a 4th generation synchrotron light source and it has been in user operation since August 2020 at the ESRF. Several measurements to characterise the nonlinear dynamics have been performed in 2023: nonlinear chromaticity, second order dispersion and detuning with amplitude. The results of the measurements are shown and compared with simulations.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P18  
About • Received ※ 23 August 2023 — Revised ※ 28 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P20 Simulated Commissioning for Diamond-II Storage Ring from On-axis to Off-axis Injection MMI, quadrupole, closed-orbit, simulation 124
 
  • H.-C. Chao, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  The Diamond-II storage ring commissioning simulations have continued based on the previous results where on-axis injected beams are captured. The next goal is to enlarge the dynamic aperture so that off-axis injection can be achieved. The procedures include beam based alignment, beta-beating correction and linear optics correction. Details of the implementations are discussed and the simulation results are presented. In the end, we are able to reach off-axis injection which allows accumulation.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P20  
About • Received ※ 22 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P34 Recent Developments of the cSTART Project storage-ring, electron, lattice, cavity 155
 
  • M. Schwarz, A. Bernhard, E. Bründermann, D. El Khechen, B. Härer, A. Malygin, A.-S. Müller, M.J. Nasse, G. Niehues, A.I. Papash, R. Ruprecht, J. Schäfer, M. Schuh, N.J. Smale, P. Wesolowski, C. Widmann
    KIT, Karlsruhe, Germany
 
  The combination of a compact storage ring and a laser-plasma accelerator (LPA) can serve as the basis for future compact light sources. One challenge is the large momentum spread (~ 2%) of the electron beams delivered by the LPA. To overcome this challenge, a very large acceptance compact storage ring (VLA-cSR) was designed as part of the compact STorage ring for Accelerator Research and Technology (cSTART) project. The project will be realized at the Karlsruhe Institute of Technology (KIT, Germany). Initially, the Ferninfrarot Linac- Und Test-Experiment (FLUTE), a source of ultra-short bunches, will serve as an injector for the VLA-cSR to benchmark and emulate LPA-like beams. In a second stage, a laser-plasma accelerator will be used as an injector, which is being developed as part of the ATHENA project in collaboration with DESY and the Helmholtz Institute Jena (HIJ). The small facility footprint, the large-momentum spread bunches with charges from 1 pC to 1 nC and lengths from few fs to few ps pose challenges for the lattice design, RF system and beam diagnostics. This contribution summarizes the latest results on these challenges.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P34  
About • Received ※ 21 August 2023 — Revised ※ 22 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE4P21 Some Beam Dynamic Issues in the HALF Storage Ring storage-ring, collimation, scattering, operation 196
 
  • J.Y. Tang
    USTC, SNST, Anhui, People’s Republic of China
  • Z.H. Bai, T.L. He, G. Liu, Y. Mo, A.X. Wang, P.H. Yang, Z. Zhao
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  HALF (Hefei Advanced Light Facility) is a fourth-generation synchrotron light source that just started construction in 2023. With 2.2 GeV in energy, 350 mA in beam current and 86 pm.rad in emittance, the HALF storage ring faces several beam dynamics challenges. This presentation gives the recent study on some of these issues, in particular the beam collimation and the influence and compensation of the insertion devices. For beam collimation, different beam loss mechanisms have been studied, and the Touschek scattering and beam dumping are considered the two major effects in designing the collimation system. Then two collimators with movable horizontal blades and fixed passive vertical blades are being designed, with the main focus on the collimation efficiency and impedance. For the influence of the insertion devices, it is found that some of the long-period undulators have a high impact on the beam dynamic aperture due to low beam energy and originally small dynamic aperture. The local compensation methods for both linear and non-linear effects have been studied. Instead of the traditional compensation method by electrical wires, the method of using two combined magnets with quadrupole and octupole fields at the two ID ends in restoring the dynamic aperture is also studied and compared.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P21  
About • Received ※ 23 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 01 September 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)