LNL - GANIL - LPSC COLLABORATION ON THE CONTAMINANTS REDUCTION IN ECR CHARGE BREEDERS

Julien ANGOT¹, Alessio GALATA², Laurent MAUNOURY³, Thomas THUILLIER¹, Maud BAYLAC¹, Myriam MIGLIORE¹, and Patrick SOLE¹

¹Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France ²INFN-Laboratori Nazionali di Legnaro, Viale dell'Università 2, 35020 Legnaro, Padova, Italy ³GANIL, bd Henri Becquerel, BP 55027, F-14076 Caen cedex 05, France

- Introduction to ECR Charge Breeding
 - Contaminants limitations
 - Plans for reduction LNL GANIL LPSC collaboration
 - Preliminary experiments
 - Conclusion

CB : principle and features

14.5 GHz 600W PHOENIX Charge breeder

Hexapole : Br 0.8T at plasma chamber wall

Total efficiency (low charge states	excluded):	50 - 60%
Efficiency / one charge state:		5 - 20%
CB time :	5 - 20	ms/q
Optimum charge state :	A/q~3	up to A=50
	A/q~5	up to A=150
contamination vield		

CB : principle and caracteristics

LNL LPSC GANIL Collaboration

- LNL GANIL and LPSC use PHOENIX charge breeders with close configuration
- Contaminants reduction is a key point for SPES and SPIRAL1 regarding :
 - Production yields (10² to 10¹⁰)
 - Resolving power of downstream separators
 - For the facility tuning (blind tuning)
- LNL LPSC and GANIL decided to collaborate on the contaminants reduction
 - Starting point in 2018 : research collaboration agreement signed between LNL and LPSC
- Work on the reduction of all the contaminants sources

Taking advantage of the pionneering work done at ANL

- Vacuum
- Plasma chamber wall sputtering
- Gas contaminants

1+N+ Beam line upgrade

- Goal : improve the vacuum and the devices alignment
- ➤ Starting situation : the 1+N+ beam line was assembled in 2002.
 - Pollution with pumping oil vapors
 - Aged pumping system (50 years turbo pumps)
 - Most of sealing by O-rings
 - Alignment was very difficult

The whole beam line was dismounted

1+N+ Beam line upgrade

- > All the vacuum chambers were modified or replaced to be UHV compatible
- Injection and extraction lenses replaced
- Diagnostics were replaced to be UHV
- > 1+ and N+ spectrometers modified to grant alignment
- Cleaning
- > Assembly
- > Alignment

Set under vacuum :

~5 10⁻⁷ mbar \rightarrow ~ 4 10⁻⁸ mbar dividing by 2 the number of turbo pumps

Validation experiments after upgrade

Check of the performances with K charge breeding

Comparable distribution using He as support gas

lower capture and distribution slightly shifted on lower CS now

- ➔ incomplete conditioning ?
- > High efficiency (17.9% K^{9+}) obtained with H_2

Contaminants preliminary experiments

Technique to measure the contaminants spectrum

Contaminants preliminary experiments

> Resolution estimate in the emittance scanner with Xe plasma

International Workshop on ECR Ion Sources, East Lansing, September 28th-30th 2020, USA

GRENOBLE | MODANE

Contaminants preliminary experiments

- This technique was used to make comparative measurements :
 - With several support gas (effect of the support gas mass) : H₂ He N₂ O₂
 - At several CB microwave power 100, 300, 450, 600W
- The CB was tuned (Axial B field and support gas dosing) to maximize the 1+N+ K10+ efficiency, at 600W, with each support gas
- Record of the spectrums in the FC and in the emittance scanner at each microwave power

- \sim Able to measure peaks
 - down to 100 pA
 - Dips in the spectrum
 - A/q list of all the contaminant peaks

Contaminants preliminary experiments

Present configuration of the plasma chamber

Injection plug: Fe with Ni and Ag plating

Extraction electrode :

2017A (Al, Cu, Mg...)

GRENOBLE | MODANE

Waveguide : Brass (Cu, Zn, Pb, Sn ...)

Plasma chamber : 304L SS (Fe, Cr, Ni, Mn, Si, N, P...)

- Gas contaminants (CANgas® MESSER)
 - H₂ 99.999% (H₂O<5ppm, O₂<1ppm, N₂<5ppm, Hydrocarbon <0.1ppm, CO +CO₂<0.1ppm)
 - He 99.999% (H_2O <20ppm, O_2 < 1 ppm, N_2 < 4 ppm, Hydrocarbon < 0.2 pj
 - N₂ 99.999% (H₂O<3ppm, O₂<2ppm, Hydrocarbon <0.1ppm)</p>
 - O₂ 99.999% (H₂O<2ppm, N₂<20ppm, Hydrocarbon <0.2ppm, CO+CO₂<0.4ppm)</p>
- Iist of all the contaminants including isotopes
- Comparison with the spectrum peaks list

Contaminants preliminary experiments contaminants A/q peak value List of most probable isotopes

3. $^{15}N^{5}$; $^{18}O^{6}$; $^{24}Ma^{8}$; $^{39}Si^{10}$; $^{33}S^{11}$; $^{36}Ar^{12}$; $^{39}\kappa^{13}$; $^{51}V^{17}$; $^{54}Cr^{18}$; $^{54}Fe^{18}$; $^{57}Fe^{19}$; $^{69}Ni^{20}$; $^{63}Cu^{21}$; $^{66}Zn^{22}$; $^{78}Kr^{26}$; $^{84}Kr^{28}$; $^{96}Mo^{32}$; $^{78}Ni^{20}$; $^{78}Fr^{20}$; $^{78}Kr^{26}$; $^{84}Kr^{28}$; $^{96}Mo^{32}$; $^{78}Fr^{20}$; $^{78}Kr^{20}$; $^$ 3.0277 ⁹⁴ Mo^{31, 97} Mo^{32,} ¹⁹F⁶, ⁵⁷Fe¹⁸, ⁹⁵Mo³⁰, ⁹⁸Mo³¹, 3.1658 ³⁹K¹², ⁶⁵Cu²⁰, ⁷⁸Kr²⁴, ¹¹⁴Sn³⁵, 3.2531 34 510, 51 V15, 68 7n^{20, 85} Rb^{25, 119} 5n^{35,} 3.4012 ³⁹K¹¹, ⁷⁸Kr²², ¹¹⁷Sn³³, 3.5502 ¹⁸0⁵, ³⁶Ar¹⁰, ⁵⁴Cr¹⁵, ⁵⁴Fe¹⁵, ⁹⁷Mo²⁷, ¹¹⁵Sn³², ¹²⁶Xe³⁵ 3.5966 ⁹⁸ Mo²⁷ 10⁹ Aa³⁰ 3.6302 ⁹⁵Mo²⁶, ¹¹⁷Sn³², ¹²⁸Xe³⁵ \succ Support Gas : H₂ 3.6584 ⁸⁵Rb²³, ⁹⁶Mo²⁶, ¹²²Sn³³ 3.6947 ⁹⁴ Mo²⁵, ¹⁰⁹ Aa²⁹, ¹²⁴ Sn³³ 3.7556 ⁸³Kr²², ⁹⁸Mo²⁶, ¹¹⁷Sn³¹, ¹³²Xe³⁵, 3.7711 ¹⁹F⁵, ⁵⁷Fe¹⁵, ⁹⁵Mo²⁵, ¹¹⁴Sn³⁰, ¹²⁹Xe³⁴, ¹³³Cs³⁵ 3.7983 ⁹²Mo²⁴, ⁹⁶Mo²⁵, ¹¹⁵Sn³⁰, ¹¹⁹Sn³¹, 3.8374 66 Zn¹⁷ 97 Mo²⁵ 128 Xe³³ 132 Xe³⁴ 3.8828 51 V13, 94 Mo24, 98 Mo25, 3,921 ${}^{2\theta}Ne^{5} \cdot {}^{24}Ma^{6} \cdot {}^{32}S^{8} \cdot {}^{36}Ar^{9} \cdot {}^{4\theta}Ar^{10} \cdot {}^{56}Fe^{14} \cdot {}^{6\theta}Ni^{15} \cdot {}^{64}Ni^{16} \cdot {}^{68}Zn^{17} \cdot {}^{8\theta}Kr^{20} \cdot {}^{84}Kr^{21} \cdot {}^{92}Mo^{23} \cdot {}^{96}Mo^{24} \cdot {}^{112}Sn^{28} \cdot {}^{120}Sn^{3\theta} \cdot {}^{124}Sn^{31} \cdot {}^{128}Xe^{32} \cdot {}^{132}Xe^{33} \cdot {}^{124}Sn^{31} \cdot {}^{128}Xe^{32} \cdot {}^{132}Xe^{33} \cdot {}^{128}Xe^{33} \cdot {}^{128}Xe$ ³⁷CL⁹, ⁷⁸Kr¹⁹, ¹¹⁵Sn²⁸, 4.1091 ³³S⁸ ⁶⁶Zn¹⁶ ¹³²Xe³² 4,1227 Metallic ions coming from the material 345⁸, 51V¹², 68Zn¹⁶, 85Rb²⁰, 119Sn²⁸, 4.2458 64 Ni^{15, 98} Mo^{23, 115} Sn^{27, 128} Xe^{30, 132} Xe^{31,} 4,2622 sputtering (Mo, Sn, Fe, Cu, Mg, Ag) ³⁹K⁹, ⁶⁵Cu¹⁵, ⁷⁸Kr¹⁸, ¹¹⁷Sn²⁷, ¹³⁰Xe³⁰ 4.3331 35 CL⁸⁺ 83 Kr¹⁹⁺ 118 Sn²⁷⁺ 131 Xe³⁰⁺ 4.3712 4.3949 Gaseous elements (support gas 4.4385 ¹⁰⁷ Ag²⁴ 4.4612 contamination, vacuum, previous ³⁶Ar^{8, 54}Cr^{12, 54}Fe^{12, 63}Cu^{14, 117}Sn^{26, 126}Xe^{28,} 4.4966 ⁹⁵ Mo²¹ experiments) 4.528 114 Sn²⁵ 4.5648 ⁶⁰Ni^{13, 97}Mo^{21, 120}Sn^{26, 134}Xe^{29,} 4.6184 Some peaks corresponding to only one Fe¹² ⁸⁴Kr¹⁸ ⁹⁸Mo²¹ ¹¹²Sn²⁴ ¹²⁶Xe²⁷ 4.6684 ³³5⁷ ⁶⁶7n¹⁴ ⁸⁰Kr¹⁷ ¹³²Xe²⁸ 4.7102 isotope ¹⁹F⁴, ⁵⁷Fe¹², ⁹⁵Mo²⁰, ¹¹⁴Sn²⁴, ¹³³Cs²⁸ 4.7474

> The same was done with He, N_2 and O_2

International Workshop on ECR Ion Sources, East Lansing, September 28th-30th 2020, USA

129 Xe²⁷

97 Mo^{20, 126} Xe^{26, 131} Xe^{27,}

4.7802

4.851

4.9156 118 Sn²⁴

Contaminants preliminary experiments

> Amplitude evolution of peaks

- H₂ gives higher contamination (it is the best support gas for low mass species charge breeding...)
 ²⁰
- This is true for most of other peaks g

Dependency with RF power : clear increase for ⁹⁶Mo¹⁵⁺ and ¹²C⁵⁺, slight decrease for Ar⁷⁺ due to a shift to higher charge state ?

GRENOBLE | MODANE

Contaminants preliminary experiments PSC

> Amplitude

- The lower measurable amplitude is ~ 100pA with the emittance scanner, corresponding to ~2 10^{10} pps in the N+ FC.
- As a comparison a 10⁸ pps RIB flux at the CB entrance would give: 10⁸ x 10% (CB efficiency) ~ 10⁷ pps
- This technique doesn't allow to measure low intensity contaminant beams
- Need of a different detector
- A lot of contaminants are identified, with very high flux
- > A/q minimum step limitation :
 - Resolution limitation of the data acquisition output, to be improved

Dips present in the spectrum

- Due to secondary electrons emission
- Shielding of the emittance scanner will be tested

Contaminants reduction : liners

Design to cover all the surfaces in front of the plasma

> Comparative experiments using several material :

- Niobium
- Tantalum
- Al₂O₃ layer on pure Aluminum liner collaboration with NIPNE

Contaminants reduction : gas

- Follow ANL steps to get rid of gas contamination
- \succ Use He or H₂ as support gas

- Upgrade of the 1+N+ beam line is finished, reduction of the residual pressure by a decade
- Preliminary contaminants reduction experiments showed limitations in the measurement technique, to be improved
- The R&D program on the charge breeder will go on to continue improving the performances...
- …with a great part dedicated to contaminants reduction

THANK YOU FOR YOUR ATTENTION

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

