04 Hadron Accelerators

A11 e-Coolers

 
Paper Title Page
TUZBPA01 The ERL High Energy Cooler for RHIC 940
 
  • I. Ben-Zvi
    BNL, Upton, Long Island, New York
 
  This talk will first briefly review high-energy electron cooling, including the recent results from Fermilab. The main empasis will be on describing the proposed electron-cooling device for RHIC, based on an Energy Recovery Linac. Finally, results from the prototype ERL will presented.  
slides icon Transparencies
TUPLS061 Design of a Low Energy Electron Cooler for the Heidelberg CSR 1630
 
  • H. Fadil, M. Grieser, D. Orlov, A. Wolf
    MPI-K, Heidelberg
 
  The electrostatic Cryogenic Storage Ring (CSR) is currently being designed at MPI-K in Heidelberg. This ring will utilize electrostatic deflectors and focusing elements, and will store ions with kinetic energies in the range 20~300 keV (E/Q) to be mainly utilized in atomic and molecular physics experiments. The CSR will be equipped with a compact magnetic electron cooler, which will serve the double purpose of phase space compression of the stored ion beam as well as an electron target for recombination experiments. The cryogenic photocathode source, developed for the Heidelberg TSR, will be used to provide extremely cold magnetically guided electron beams. The maximum cooling electron energy is 165 eV and the usual operation energy for 20 keV protons will be about 10 eV. The cooler will fit in the 2.8 m straight section of the ring. The device will be installed inside the outer vacuum chamber of the CSR, and the magnetic confinement of the electrons will be provided with high temperature superconducting coils. The design of the magnets of the CSR electron cooler will be presented in this paper.  
TUPLS062 Cooling Rates at Ultra-low Energy Storage Rings 1633
 
  • C.P. Welsch, C.P. Welsch
    CERN, Geneva
  • A.V. Smirnov
    JINR, Dubna, Moscow Region
 
  Electrostatic low-energy storage rings have proven to be a highly flexible tool, able to cover experiments from a variety of different fields ranging from atomic, nuclear and molecular physics to biology and chemistry. Future machines will decisively rely on efficient electron cooling down to electron energies as low as some eV, posing new challenges to the cooler layout and operation. The BETACOOL code has already been successfully applied for the layout and optimization of a number of different electron coolers around the world. In this contribution, the results from calculations of the cooling rates at future low-energy machines equipped with an internal target like the Ultra-low energy Storage Ring (USR) at the Facility for Low-energy Antiproton and Ion Research (FLAIR) are presented.  
TUPLS064 Design and Commissioning of a Compact Electron Cooler for the S-LSR 1639
 
  • H. Fadil, S. Fujimoto, A. Noda, T. Shirai, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Fujimoto, S.I. Iwata, S. Shibuya
    AEC, Chiba
  • M. Grieser
    MPI-K, Heidelberg
  • K. Noda
    NIRS, Chiba-shi
  • I.A. Seleznev, E. Syresin
    JINR, Dubna, Moscow Region
 
  The ion cooler ring S-LSR has been constructed and commissioned in October 2005. The ring successfully stored a 7 MeV proton beam. The S-LSR is equipped with a compact-electron cooler which has a cooling solenoid length of 0.8 m, a toroid bending radius of 0.25 m and maximum magnetic field in the cooling section of 0.5 kG. The commissioning of the electron cooler was carried out with successful observation of both longitudinal and horizontal cooling of the proton beam. By varying the electric potential on the Pierce electrode in the gun, we have investigated the possibility of generating a hollow shaped electron beam, and studied its effect on the electron cooling process. Also the effect of the electrostatic deflector, installed in the toroid section in order to compensate the drift motion of the secondary electrons, was investigated. The design and results of the commissioning of the compact electron cooler are presented.  
TUPLS065 Beam Commissioning of Ion Cooler Ring, S-LSR 1642
 
  • T. Shirai, S. Fujimoto, M. Ikegami, A. Noda, H. Souda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • H. Fadil
    MPI-K, Heidelberg
  • T. Fujimoto, H. Fujiwara, S.I. Iwata, S. Shibuya
    AEC, Chiba
  • I.N. Meshkov, I.A. Seleznev, A.V. Smirnov, E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
 
  S-LSR is a new ion cooler ring constructed in Kyoto University. The circumference is 22.557 m and the maximum magnetic rigidity is 1 Tm. The constructiion and the vacuum baking had been finished in September, 2005. The beam commissioning was started since October, 2005. The injected beam is 7 MeV proton from the existing linac. The beam circulation test and the electron beam cooling were carried out successfully and the beam information and the characteristics of the ring were measured. One of the subjects of S-LSR is a realization of the crystalline beams using the electron and laser cooling. The lattice of S-LSR was designed to suppress the beam heating as much as possible and we also present such measurement results in this paper.  
TUPLS066 Peculiarities of Electron Cooler Operation and Construction at Ultra Low Energy in an Electrostatic Ring 1645
 
  • E. Syresin
    JINR, Dubna, Moscow Region
 
  Few projects of electrostatic rings with electron cooler are discussed now. Electron cooling at low electron energy of 10 eV was realized at the KEK electrostatic ring. The electron cooling permits to suppress the ion multi scattering on residual gas atoms and allows increasing the ion lifetime. Peculiarities of an electron cooler operation and construction at ultra low energy in an electrostatic ring are considered. The cooler gun operation regime is cardinally changed at a reduction of the electron energy to a value comparable with a cathode work function. A virtual cathode and ohmic resistance of cathode emitter give an input in beam formation at ultra low energy. Effective electron cooling of heavy atomic and bimolecular ions at mass of 100-1000 is reached at a small photocathode diameter of 1 mm and a high magnetic expansion factor of 10-1000. The electron cooler construction has traditional design in KEK electrostatic ring. The cooler construction can be simplified at a small circumference of electrostatic ring. Straight cooler schemes without toroidal magnets permit to reduce ring space required for electron cooler.  
TUPLS067 Status of the HESR Electron Cooler Design Work 1648
 
  • D. Reistad, T. Bergmark, O. Byström, B. Gålnander, S. Johnson, T. Johnson, T. Lofnes, G. Norman, T. Peterson, K. Rathsman, L. Westerberg
    TSL, Uppsala
  • H. Danared
    MSL, Stockholm
 
  The electron energy of the HESR electron cooler shall be variable from 450 keV to 4.5 MeV. Furthermore, the design shall not exclude a further upgrade to 8 MeV. Operation of the HESR in a collider mode, which requires electron cooling of both protons and antiprotons traveling in opposite directions, is an interesting option. The status of the technical design of the HESR electron cooling system will be presented.  
TUPLS068 LEIR Electron Cooler Status 1651
 
  • G. Tranquille, V. Prieto, R. Sautier
    CERN, Geneva
  • A.V. Bubley, V.V. Parkhomchuk
    BINP SB RAS, Novosibirsk
 
  The electron cooler for LEIR is the first of a new generation of coolers being commissioned for fast phase space cooling of ion beams in storage rings. It is a state-of-the-art cooler incorporating all the recent developments in electron cooling technology (adiabatic expansion, electrostatic bend, variable density electron beam…) and is designed to deliver up to 600 mA of electron current for the cooling and stacking of Pb54+ ions in the frame of the ions for LHC project. In this paper we present our experience with the commissioning of the new device as well as the first results of ion beam cooling with a high-intensity variable-density electron beam.  
TUPLS069 Performance of Fermilab's 4.3 MeV Electron Cooler 1654
 
  • A.V. Shemyakin, A.V. Burov, K. Carlson, M. Hu, T.K. Kroc, J.R. Leibfritz, S. Nagaitsev, L.R. Prost, S.M. Pruss, G.W. Saewert, C.W. Schmidt, M. Sutherland, V. Tupikov, A. Warner
    Fermilab, Batavia, Illinois
 
  A 4.3 MeV DC electron beam is used to cool longitudinally an antiproton beam in the Fermilab's Recycler ring. The cooling rate is regulated either by variation of the electron beam current up to 0.5 A or by a vertical separation of beams in the cooling section. The paper will describe steps that provided a stable operation and present the status of the cooler.  
TUPLS080 The Proposed 2 MeV Electron Cooler for COSY-Juelich 1684
 
  • J. Dietrich
    FZJ, Jülich
  • V.V. Parkhomchuk
    BINP SB RAS, Novosibirsk
 
  The design, construction and installation of a 2 MeV electron cooling system for COSY-Juelich is proposed to further boost the luminosity even with strong heating effects of high-density internal targets. In addition the design of the 2 MeV electron cooler for COSY is intended to test some new features of the high energy electron cooler for HESR at FAIR/GSI. The design of the 2 MeV electron cooler will be accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Starting with the boundary conditions of the existing electron cooler at COSY the requirements and a first general scheme of the 2 MeV electron cooler are described.