A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ferrari, A.

 
Paper Title Page
TUPCH084 Expected Signal for the TBID and the Ionization Chambers Downstream of the CNGS Target Station 1208
 
  • L. Sarchiapone, A. Ferrari, E. Gschwendtner, M. Lorenzo Sentis
    CERN, Geneva
 
  Downstream the carbon graphite target of the CNGS (CERN Neutrinos to Gran Sasso) facility at CERN it has been decided to install a secondary emission monitor called TBID (Target Beam Instrumentation Downstream) monitor to measure the multiplicities and the left/right as well as up/down asymmetries of secondary particles from target. Calculations show that the titanium windows used to close off the TBID vacuum tank might not withstand the highest beam intensities with small spot sizes expected at CNGS, in case the proton beam accidentally misses the 4-5 mm diameter target rods. Therefore it has been suggested to place two ionisation chambers as a backup for the TBID located left and right of the TBID monitors. Monte Carlo simulations with the particle transport code FLUKA were performed firstly to obtain the fluence of charged particles in the region of interest and secondly to estimate the induced radioactivity (noise) in this area. This allows to assess the actual signal/noise situation and thus to determine the optimal position (lateral displacement with respect to the beamline) of the ionisation chambers. This document presents the results of these calculations.  
TUPLS018 Collimation Efficiency during Commissioning 1529
 
  • C.B. Bracco, R.W. Assmann, A. Ferrari, S. Redaelli, G. Robert-Demolaize, M. Santana-Leitner, V. Vlachoudis, Th. Weiler
    CERN, Geneva
 
  The design of the LHC collimation system naturally focused on understanding and maximizing the ultimate performance with all collimators in place. However, for the commissioning of the LHC it is important to analyze the collimation efficiency with certain subsets of collimators, with increased collimation gaps and relaxed set-up tolerances. Special studies on halo tracking and energy deposition have been performed in order to address this question. The expected cleaning performance and intensity limits are discussed for various collimation scenarios as they might be used during commissioning and initial operation of the LHC.  
TUPLS132 Estimation of the Energy Deposited on the CNGS Magnetic Horn and Reflector 1813
 
  • L. Sarchiapone, A. Ferrari, M. Lorenzo Sentis
    CERN, Geneva
 
  In the CNGS installation two magnetic lenses, namely the horn and the reflector, focus the secondary beam generated in the target station. The gap between the horn and reflector is chosen to optimize a wide-band high-energy muon-neutrino beam. These two focusing elements are two coaxial lenses similar in length but different in shape: the outer conductor has a cylindrical shape whereas the inner conductor consists of a sequence of conical shapes to optimize the focusing capacity. The evaluation of the heat load on the support structures is crucial since modifications in the elements around the horn and reflector are under way and the support structures can be adapted to the heat load found. Furthermore, the heat load in the whole horn area has been evaluated to optimize the cooling-ventilation system. The FLUKA geometry input of the horn and reflector electrical connections has been notably improved in order to accommodate the detailed striplines design to the thermal expansion. The energy deposited on the horn and reflector as well as on their adjacent elements has been estimated using the FLUKA Monte Carlo package and results are presented in this document.  
TUODFI01 The Final Collimation System for the LHC 986
 
  • R.W. Assmann, O. Aberle, G. Bellodi, A. Bertarelli, C.B. Bracco, H.-H. Braun, M. Brugger, S. Calatroni, R. Chamizo, A. Dallocchio, B. Dehning, A. Ferrari, P. Gander, A. Grudiev, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, M. Jonker, Y. Kadi, K. Kershaw, J. Lendaro, J. Lettry, R. Losito, M. Magistris, A.M. Masi, M. Mayer, E. Métral, R. Perret, C. Rathjen, S. Redaelli, G. Robert-Demolaize, S. Roesler, F. Ruggiero, M. Santana-Leitner, P. Sievers, M. Sobczak, E. Tsoulou, V. Vlachoudis, Th. Weiler
    CERN, Geneva
  • I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
 
  The LHC collimation system has been re-designed over the last three years in order to address the unprecedented challenges that are faced with the 360 MJ beams at 7 TeV. The layout of the LHC has now been fixed and a final approach for collimation and cleaning has been adopted. In total 132 collimator locations have been reserved in the two LHC rings and can be installed in a phased approach. Ninety collimators of five different types will be available for initial beam operation. The system has been fully optimized for avoiding quenches of super-conducting magnets during beam losses and for sufficient survival of beamline components against radioactive dose. The phased approach for LHC collimation is described, the various collimators and their functionalities are explained, and the expected system performance is summarized.  
slides icon Transparencies
MOPLS078 Benchmarking of Tracking Codes (BDSIM/DIMAD) using the ILC Extraction Lines 733
 
  • R. Appleby
    UMAN, Manchester
  • P. Bambade, O. Dadoun
    LAL, Orsay
  • A. Ferrari
    UU/ISV, Uppsala
 
  The study of beam transport is of central importance to the design and performance assessment of modern particle accelerators. In this work, we benchmark two contemporary codes - DIMAD and BDSIM, the latter being a relatively new tracking code and built within the framework of GEANT4. We consider both the 20mrad and 2mrad extraction lines of the International Linear Collider and perform disrupted beam tracking studies of heavily disrupted post-collision electron beams. We find that the two codes in most cases give an equivalent description of the beam transport.  
MOPLS091 First Design of a Post Collision Line for CLIC at 3 TeV 765
 
  • V.G. Ziemann, T. J. C. Ekelof, A. Ferrari
    UU/ISV, Uppsala
  • P. Eliasson
    CERN, Geneva
 
  As part of the Post collision diagnostic task of the ILPS work-package of EuroTeV we discuss a design of the beam line between the interaction point and the beam dump for CLIC with a center-of-mass energy of 3 TeV. The design is driven by the requirement to transport the beam and all secondaries such as beamstrahlung and coherent pairs to the beam dump with minimal losses. Moreover, we discuss the integration of novel diagnostic methods into the post collision beam line based on the detection of coherent pairs and monitoring the beam profile of the primary beam.  
MOPLS102 Beam Dynamic Studies and Emittance Optimization in the CTF3 Linac at CERN 798
 
  • P. Urschütz, H.-H. Braun, R. Corsini, S. Doebert, F. Tecker
    CERN, Geneva
  • A. Ferrari
    UU/ISV, Uppsala
 
  Small transverse beam emittances and well-known lattice functions are crucial for the 30 GHz power production in the Power Extraction and Transfer Structure (PETS), and for the commissioning of the delay loop of the CLIC Test Facility 3 (CTF3). Following beam-dynamics-simulation results, two additional solenoids were installed in the CTF3 injector in order to improve the emittance. During the runs in 2005 and 2006, an intensive measurement campaign to determine Twiss parameters and beam sizes was launched. The results obtained by means of quadrupole scans for different modes of operation suggest rms emittances well below the nominal (100 pi mm mrad) and a convincing agreement with PARMELA simulations.  
TUPCH082 The EuroTeV Confocal Resonator Monitor Task 1202
 
  • V.G. Ziemann, T. J. C. Ekelof, A. Ferrari, M. A. Johnson, E. A. Ojefors, A. B. Rydberg
    UU/ISV, Uppsala
  • F. Caspers
    CERN, Geneva
 
  We describe the progress in the analysis of the confocal resonator monitor task which is part of the diagnostics workpackage of EuroTeV. The initial design was analyzed both numerically and experimentally and found limitations. We therefore digressed from strict confocality and report the numerical analysis and S-parameter measurements of a modified design. Furthermore, we discuss the mechanical design needed for planned tests with beam in CTF3 which requires integration of the monitor into the beam pipe, damping of trapped modes, and frequency tunability.