Author: Afarideh, H.
Paper Title Page
MODM02 Magnet Optimization and Beam Dynamic Calculation of the 18 MeV Cyclotron by TOSCA and CYCLONE Codes 36
 
  • N. Rahimpour Kalkhoran, H. Afarideh, M. Afkhami Karaei, S. Sabounchi
    AUT, Tehran, Iran
  • M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  Designing and manufacturing of the 18 MeV cyclotron has been started for producing H for applications in Posi-tron Emission Tomography (PET) radioisotopes at Amirkabir University Of Technology. Up to this point, there were 2 steps in magnet design: Initial design and optimization processes. The AVF structure with hill and valley was selected for getting strong axial focusing in magnet design and achieving up to 18MeV energy for the particle. After finishing the initial design, optimization process in magnet design was started for achieving the best coincidence in magnetic field. Checking the beam dynamic of the particle is one of the most important and necessary steps after magnet simulation. The phenomenon which confirms simulated magnet validity is obtaining reasonable particle trajectory. This paper focused on the optimization process in magnet design and simulation of the beam dynamic. Some results which ensure a particle can be accelerated up to 18 MeV energy, are presented. All magnetic field calculation in whole magnet was calculated by OPERA-3D(TOSCA) code. Also beam dynamic analysis by applying magnetic field data from the magnet simulation was done in CYCLONE code.  
poster icon Poster MODM02 [1.860 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MODM03 Equivalent Circuit Model of Cyclotron RF System 39
 
  • M. Mohamadian, H. Afarideh, S. Sabounchi, M. Salehi
    AUT, Tehran, Iran
  • M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  Cyclotron cavity modeled via electromagnetic circuits in the desired frequency. The design performed according to resonator basis and also cyclotron acceleration requirements with ADS software and compared to simulations made by the CST microwave studio. The scattering parameters obtained for main resonators of the cyclotron and Dee parts as a diaphragm for each of cavity sections and also for the whole structure. All the characteristics modeled and calculated by the electromagnetic rules and theory of resonators from circuit model. Then it analysed with numerical methods for bench-marking. Finally, it shows that the circuit model able to modeled accurately the cyclotron cavity and especially it can estimate precisely the structure parameters without any time consuming numerical method simulations.  
poster icon Poster MODM03 [1.475 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP03 Developed Numerical Code Based on the Effects of Space Charge in Central Region of 10 MeV Cyclotron 49
 
  • M. Afkhami Karaei, H. Afarideh, S. Azizpourian, M. Mousavinia, R. Solhju, F. Taft
    AUT, Tehran, Iran
  • J.-S. Chai, M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  To study of space charge effects in 10 MeV cyclotron of Amirkabir University of Technology the C++ code is developed. This cyclotron is designed to accelerate H up to 10MeV energy. The important components of cyclotron that effect on calculations of space charge include four sector magnets, 2 RF cavities with 71MHz frequency and internal PIG ion source. Equations of motion and effects of charged particles in electromagnetic field of accelerator are integrated in C++ code. The conventional method, 4-order Runge-Kutta, is used to solve the equations. The results of calculations show space charge effects of beam particles on each other in accelerating process.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP22 Simulation of Optimum Thickness and Configuration of 10 MeV Cyclotron Shield 110
 
  • S. Azizpourian, H. Afarideh, M. Afkhami Karaei, M. Mousavinia
    AUT, Tehran, Iran
  • F. Abbasi Davani
    Shahid Beheshti University, Tehran, Iran
 
  Baby Cyclotrons that made in Self-shield type have been employed for use in Medical center for the diagnosis of cancer diseases by positron emission tomography (PET) system. Here in we have done a discussion on gamma and neutron dose rates at a distance of one meter outside of the cyclotron shielding. This shield consist of Lead, polyethylene borated (10% Boron) layers from inside to outside respectively. With increasing the thickness of lead and polyethylene we will see a decrease in the gamma and neutron dose which received by the water phantom at a distance of one meter outside from the surface of the shield of the cyclotron. Note that the gamma and neutron dose at the beginning (without any shielding) was on the order of several thousand μSv per hour that by achieve to a certain amount of thickness of the shield, the dose was reduced to below of the limited level. In this study, the MCNPX Code has been used. In MCNPX Code that used the variance reduction techniques for decreasing relative errors of calculation which was a good method for this case study.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB03 Design and Simulation of Cavity for 18 MeV Cyclotron 267
 
  • M. Mousavinia, H. Afarideh
    AUT, Tehran, Iran
  • M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  RF system is the key part of cyclotron and cavity is the key part of RF system. The basic parameters of cavity design are the resonant frequency , dee voltage , RF phase and RF power. Proper operation of cavity depends on the suitable voltage distribution in accelerating gap, phase stability in cavity and as well as optimal scattering parameters. In this simulation by using CST MWS, different parts of cavity such as stam and dee are optimized to achieved optimum dimesnsions for desired resonant freq, dee voltage and RF power. Properties of designed cavity including: resonant frequency at 64.3 MHz, dee voltage is 45 kV and RF power is 11 kW.  
slides icon Slides WEB03 [3.767 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP07 Development of Control System for 10 MeV Cyclotron 319
 
  • M. Hassani, H. Afarideh, Y. Ghorashinejad
    AUT, Tehran, Iran
 
  AmirKabir University of Technology is developing a 10 MeV cyclotron to produce radio isotopes. In order to operate the cyclotron stably, all sub-systems in the cyclotron are controlled and monitored consistently. The control system has been developed based on PLC and the operation is monitored by HMI permanently. Also, the control console located in the control room, provides data logging and controlling different steps of operation by the operator. In addition, the system can be remotely accessed over the network to monitor the status of cyclotron easily. The configuration of the control system for 10MeV cyclotron will be presented in this paper.  
poster icon Poster THP07 [1.257 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THD02 Heat Transfer Studies of the IRANCYC-10 Magnet and its Effects on the Isochronous Magnetic Field 380
 
  • S. Sabounchi, H. Afarideh, R. Solhju, F. Zakerhosseini
    AUT, Tehran, Iran
  • M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  In magnets for cyclotron, one of the prominent problems is difference between simulation and feasible operations. By considering more factors in simulation these differ-ence can be reduced. Thermal effect and heat transfer is one phenomenon which can change favourite features of the magnets. IRANCYC-10 is a compact AVF cyclotron which is in manufacturing phase at AmirKabir University of Technology. In IRANCYC-10 heat transfer studies have been done for RF cavity, RF transmission line and PIG ion source. In this paper, accurate simulation of heat transfer and magnetic field have been done. Also thermal effects on isochronous magnetic field for IRAN-CYC-10 is investigated. For heat transfer and CFD simu-lations, Ansys CFX and for magnetic simulation Opera 3D Tosca have been used. The initiate magnet ampere-turn in simulation is 45201 and water mass flow rate for magnet system is considered 53 lit/min.  
slides icon Slides THD02 [6.831 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)