Paper | Title | Page |
---|---|---|
TUPB074 | High-Vacuum Simulations and Measurements on the SSR1 Cryomodule Beam-Line | 754 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy In order to guarantee an effective cool-down process for the SSR1 cryomodule, a high-vacuum level must be achieved at room temperature in the beam-line before introducing gaseous and liquid helium. The SSR1 cavities in the beamline have a small beam aperture compared to the size of their internal volume. To avoid unnecessary complications for the vacuum piping of the cryomodule cold-mass, a pilot study was conducted on the string prior to processing and qualification of the components to investigate the vacuum level achievable by pumping only through the beam-line. To estimate the pressure distribution inside the cavity string we used a mathematical model implemented in a test-particle Monte-Carlo simulator for ultra-high-vacuum systems. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB104 | Series Production of BQU at DESY for the EU-XFEL Module Assembly at CEA Saclay | 865 |
|
||
Each of the 103 XFEL modules foreseen for the EU-XFEL as well as the 3,9 GHZ injector module is equipped with a combination of beam position monitors, superconducting quadrupole and a gate valve connected to the beam position monitor. The subunits are prequalified by the different work package of the EU-XFEL collaboration and handover to the DESY cleanroom. These subunits are assembled in the DESY ISO 4 cleanroom to unit named BQU, quality controlled in respect of cleanliness and handover in status “ready for assembly in ISO 4 cleanroom” for string assembly to the ISO 4 cleanroom located at CEA France. Series production started with production sequences of one unit per week and needed to be accelerated up to five or six units per month (>=1.25 units per week) in beginning of 2015. Analysis of data taken during production and the optimization of work flow for higher production rates are presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB105 | String Assembly for the EU-XFEL 3.9 GHz Module at DESY | 869 |
|
||
For the injector of the EU- XFEL one so-called 3.9 GHz module is required. This special module houses eight 3.9 GHz s.c. cavities, a beam position monitor and a quadrupole package. The cavities were fabricated and vertically tested as an in-kind contribution to the EU-XFEL by INFN Milano collaborators. The power couplers have been fabricated and conditioned by FNAL. The string assembly took place inside the ISO 4 cleanroom at DESY. A seven meter long alignment and assembly girder for this special string assembly has been designed and fabricated at DESY. The girder facilitates the assembly of the 3.9 GHz resonators with alternating power coupler orientation in ISO 4 cleanrooms. For redundancy and fast action on problems during string assembly, the DESY high pressure rinsing system (HPR) has been modified on the basis of the INFN Milano design for this 3.9 GHz application. The HPR has been qualified by four 3.9 GHz resonators, tested at INFN Milano. The integration of the cavities into Helium vessels, power coupler coupling factor and the power coupler assembly at DESY is qualified by one cavity that has been equipped with Helium tank and a power coupler and tested horizontally. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB106 | First HIE-ISOLDE Cryo-module Assembly at CERN | 874 |
|
||
The first phase of the HIE-ISOLDE project aims to increase the energy of the existing REX ISOLDE facilities from 3MeV/m to 5MeV/m. It involves the assembly of two superconducting cryo-modules based on quarter wave resonators made by niobium sputtered on copper. The first cryo-module was installed in the linac in May 2015 followed by the commissioning. The first beam is expected for September 2015. In parallel the second cryo-module assembly started. In this paper, we present the different aspects of these two cryo-modules including the assembly facilities and procedures, the quality assurance and the RF parameters (cavity performances, cavity tuning and coupling). | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB107 | Development of a Test Bench to Prepare the Assembly of the IFMIF LIPAC Cavity String | 879 |
|
||
The IFMIF LIPAc cryomodule houses eight half-wave resonators and eight solenoids which will be assembled on a support frame in clean room. Due to the short lattice defined by beam dynamics constraints, there is not much room between two elements for the operators’ hands to connect them. In order to test, optimize and validate the clean room assembly procedures and the associated tools, a test bench, consisting of a frame, a little bigger than one eight of the final support has been manufactured. In order to start the tests before the delivery of the actual key components of the cryomodule, a dummy cavity, solenoid and coupler were manufactured and will be used to perform tests outside and inside the clean room to validate the assembly procedure and the tools. The mock-up will then be used to train the operators for the assembly of the whole string. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB108 | Connection of EU-XFEL Cryomodules, Caps, Boxes in EU-XFEL Main Linac and Injector: Welding of Cryo-Pipes and Assembly of Beam-Line Absorbers Under Requirements of PED Regulation | 883 |
|
||
The European X-ray Free Electron Laser (EU-XFEL) cold linac consists of 100 assembled cryomodules, 6 feed-/end-boxes and 6 string connection boxes fixed to the ceiling of the accelerator tunnel; the injector consists of a radio frequency gun, one 1.3 GHz and one 3.9 GHz cryomodule, one feed- and one end-cap lying on ground supports. The components are connected together in the tunnel, after cold testing, transport, final positioning and alignment. The cold linac is a pressure equipment and is therefore subjected to the requirements of the Pressure Equipment Directive (PED). This paper describes the welding and subsequent non-destructive testing of the cryo-pipes (with a deeper look at the technical solutions adopted to satisfy the PED requirements), the assembly of the beam line absorbers and the final steps before closing the connection with a DN1000 bellows. A special paragraph will be dedicated to the connection of the injector components, where the lack of space makes this installation a particularly challenging task. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB109 | Assembly and Cool-Down Tests of STF2 Cryomodule at KEK | 888 |
|
||
As the next step of the quantum beam project, the STF2 project is in progress at KEK. Eight 9-cell SC cavities and one superconducting quardrapole magnet were assembled into the cryomodule called CM1. Four 9-cell SC cavities were assembled into the cryomodule called CM2a. These two cryomodules were connected as one unit, and the examination of completion by a prefectural government was carried out. The target value of beam energy in the STF2 accelerator is 400 MeV with a beam current of 6 mA. The first cool down test for low power level RF measurements was performed in autumn of 2014. In this paper, the assembly procedure of the STF2 cryomodules and the results of the low-power measurement are reported. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB110 | LCLS-II 1.3 GHz Design Integration for Assembly and Cryomodule Assembly Facility Readiness at Fermilab | 893 |
|
||
Funding: DOE LCLS-II is a planned upgrade project for the linear coherent light source (LCLS) at Stanford Linear Accelerator Center (SLAC). The LCLS-II linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab will assemble in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Both Fermilab and Jefferson Lab will each assemble and test a prototype 1.3 GHz cryomodule to assess the results of the CW modifications. After prototype cryomodule tests, both laboratories will increase cryomodule production rate to meet the challenging LCLS-II project installation schedule requirements of approximately one cryomodule per month per laboratory. This paper presents the 1.3 GHz CW cryomodule design integration for assembly at Fermilab, Fermilab Cryomodule Assembly Facility (CAF) infrastructure modifications for the LCLS-II cryomodules, and readiness for the required assembly throughput. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRAA02 |
Module Performance in XFEL Cryomodule Mass-Production | |
|
||
The European XFEL cryomodule assembly is executed in CEA-Saclay premises and infrastructure by an industrial company, Alsyom, under the supervision of CEA. The nominal assembly throughput and delivery rate of one cryomodule per week has been reached with XM15 in October 2015. With a throughput of 4 days in place in January 2015 with XM26, the delivery of XM100 is currently foreseen before mid-2016. This contribution will present the status of this large scale production project, insisting on the challenges, both technical and organizational, for achieving the quantitative production goal, and on the enhanced quality control put in place in parallel to achieve the qualitative goals in term of module conformance and RF performance. Mitigation of non-conformities generated by the accelerator components, by the assembly tools and finally by the assembly process is essential to eliminate their impact on the production schedule and, especially for the last category, on the module acceptance. The most significant module test results will be discussed with emphasis on their correlation (or lack of thereof) to detailed assembly conditions and their evolution. | ||
![]() |
Slides FRAA02 [14.103 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |