Author: Romanenko, A.
Paper Title Page
MOBA02
Efficient Magnetic Flux Expulsion During Cooldown  
 
  • A. Romanenko
    Fermilab, Batavia, Illinois, USA
 
  The talk will report recent experimental results and theoretical understanding of the magnetic flux expulsion during cooldown provided by large thermal gradients. The complete expulsion of the magnetic flux can lead to record-high Qs at accelerating gradients of ~20 MV/m. High Qs were achieved in ambient magnetic fields up to 190 mG. These findings open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.  
slides icon Slides MOBA02 [7.633 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB014 Magnetic Flux Expulsion in Horizontally Cooled Cavities 110
 
  • M. Martinello, M. Checchin, A. Grassellino, O.S. Melnychuk, A. Romanenko, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • M. Checchin
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • J. Zasadzinski
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by the US Department of Energy, Office of High Energy Physics
The cool down details of superconducting accelerating cavities are crucial parameters that have to be optimize in order to obtain very high quality factors. The temperature all around the cavity is monitored during its cool down across the critical temperature, in order to visualize the different dynamics of fast and slow cool-down, which determine considerable difference in terms of magnetic field expulsion and cavity performance. The study is performed placing a single cell 1.3 GHz elliptical cavity perpendicularly to the helium cooling flow, which is representative of how SRF cavities are cooled in an accelerator. Hence, the study involves geometrical considerations regarding the cavity horizontal configuration, underling the different impact of the various magnetic field components on the surface resistance. Experimental data also proves that under established conditions, flux lines are concentrated at the cavity top, in the equatorial region, leading to temperature rise.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB015 Trapped Flux Surface Resistance Analysis for Different Surface Treatments 115
 
  • M. Martinello, M. Checchin, A. Grassellino, O.S. Melnychuk, S. Posen, A. Romanenko, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • M. Checchin
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • J. Zasadzinski
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by the US Department of Energy, Office of High Energy Physics
The trapped flux surface resistance is one of the main contributions on cavity losses which appears when cavities are cooled in presence of external magnetic field. The study is focused on the understanding of the different parameters which determine the trapped flux surface resistance, and how this change as a function of different surface treatments. The study is performed on 1.3 GHz niobium cavities processed with different surface treatments after the 800 C bake: electro-polishing (EP), 120 C baking, and N-doping varying the time of the Nitrogen exposure. The trapped flux surface resistance normalized for the trapped magnetic flux is then analyzed as a function of the mean free path in order to find the surface treatment which minimized the trapped flux sensitivity.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB019 Horizontal Testing and Thermal Cycling of an N-Doped Tesla Type Cavity 125
 
  • O. Kugeler, J. Knobloch, J.M. Köszegi
    HZB, Berlin, Germany
  • A. Grassellino, O.S. Melnychuk, A. Romanenko, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
 
  An N-doped TESLA type cavity treated at FERMILAB has been tested in the HoBiCaT horizontal test stand. Temperatures and magnetic fields occuring during the superconducting transition were recorded at various positions and directions on the outer cavity surface. Several thermal cycling runs were performed yielding different Q0 factors just like in undoped cavities. The resulting residual and BCS resistance values were correlated to the thermal and magnetic conditions during cooldown.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB020 Mean Free Path Dependence of the Trapped Flux Surface Resistance 129
 
  • M. Checchin, A. Grassellino, M. Martinello, A. Romanenko
    Fermilab, Batavia, Illinois, USA
  • M. Martinello
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • J. Zasadzinski
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by the US Department of Energy, Office of High Energy Physics
In this article a calculation of the trapped flux surface resistance is presented. The two main mechanisms considered in such approach are the oscillation of the magnetic flux trapped in the superconductor due to the Lorentz force, and the static resistance associated to the normal conducting vortex core. The model derived shows a good description of the available experimental data, highlighting that the radio frequency vortex dissipation is mostly due to the static part of the surface resistance. We show that the surface resistance for 100% trapped flux normalized to the trapped field (expressed in nOhm/mG) can be approximated to R/B=18.3*(l f)1/2/(50.1+l) with l the mean free path in nm and f the frequency in GHz.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB025
Quality Factor Field Dependence Down to Very Low Fields  
 
  • A. Romanenko, M. Checchin, T.N. Khabiboulline, M. Martinello
    Fermilab, Batavia, Illinois, USA
  • M. Checchin, M. Martinello
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Potential application of SRF cavities for quantum computing requires their operation in the limit of very low fields (down to single photon) and temperatures (<100 mK). If niobium cavities are advantageous for this field depends on the Q value, which can be achieved, and therefore requires detailed studies in the low field Q slope regime. Here we report the first attempt toward such a characterization by extending the low field Q slope measurements in 1.3 GHz single cell cavities down to the lowest possible fields.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB027 Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping of Ultra-High Quality Factor Cavities 144
 
  • A. Vostrikov, A. Grassellino, A. Romanenko
    Fermilab, Batavia, Illinois, USA
  • L. Horyn, Y.K. Kim, A. Vostrikov
    University of Chicago, Chicago, Illinois, USA
  • T. Murat
    University of Wisconsin-Madison, Madison, USA
 
  We have performed detailed studies using DC and AC magnetometry and electrical resistivity measurements of niobium samples prepared using different nitrogen doping recipes. We compare the results to the samples prepared by standard preparation techniques such as EP with and without additional 120C baking to get insight into driving factors of the lowered quench field in N-doped SRF cavities.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB033 LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration 159
 
  • M. Liepe, P. Bishop, H. Conklin, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, T. Gruber, D.L. Hall, G.H. Hoffstaetter, J.J. Kaufman, G. Kulina, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Checchin, A.C. Crawford, A. Grassellino, C.J. Grimm, A. Hocker, M. Martinello, O.S. Melnychuk, J.P. Ozelis, A. Romanenko, A.M. Rowe, D.A. Sergatskov, W.M. Soyars, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • E. Daly, G.K. Davis, M.A. Drury, J.F. Fischer, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515.
The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB041 Cryomodule Testing of Nitrogen-Doped Cavities 182
 
  • D. Gonnella, B. Clasby, R.G. Eichhorn, B. Elmore, F. Furuta, G.M. Ge, D.L. Hall, Y. He, G.H. Hoffstaetter, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Grassellino, C.J. Grimm, J.P. Holzbauer, O.S. Melnychuk, Y.M. Pischalnikov, A. Romanenko, W. Schappert, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: DOE and the LCLS-II High Q Project
The Linac Coherent Light Source-II (LCLS-II) is a new FEL x-ray source that is planned to be constructed in the existing SLAC tunnel. In order to meet the required high Q0 specification of 2.7x1010 at 2 K and 16 MV/m, nitrogen-doping has been proposed as a preparation method for the SRF cavities in the linac. In order to test the feasibility of these goals, four nitrogen-doped cavities have been tested at Cornell in the Horizontal Test Cryomodule (HTC) in five separate tests. The first three tests consisted of cavities assembled in the HTC with high Q input coupler. The fourth test used the same cavity as the third but with the prototype high power LCLS-II coupler installed. Finally, the fifth test used a high power LCLS-II coupler, cavity tuner, and HOM antennas. Here we report on the results from these tests along with a systematic analysis of change in performance due to the various steps in preparing and assembling LCLS-II cavities for cryomodule operation. These results represent one of the final steps to demonstrate readiness for full prototype cryomodule assembly for LCLS-II.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB055 Characterization of Nitrogen Doping Recipes for the Nb SRF Cavities 223
 
  • Y. Trenikhina, A. Grassellino, O.S. Melnychuk, A. Romanenko
    Fermilab, Batavia, Illinois, USA
 
  For the future development of the nitrogen doping technology, it’s vital to understand the mechanisms behind the performance benefits of N-doped cavities as well as the performance limitations, such as quench field. Following various doping recipes, cavity cutouts and flat niobium samples have been evaluated with XRD, SEM, SIMS and TEM in order to relate structural and compositional changes in the niobium near-surface to SRF performance. Annealing of Nb cavities with nitrogen for various durations and at various temperatures lead to a layer containing inclusions of non-superconducting Nb nitride phases, followed by unreacted Nb with an elevated N-interstitials concentration. We found that EP of the N-treated cavities removes the unwanted niobium nitride phases, confirming that performance benefits are originating from the elevated concentration of N interstitials. The role of low temperature Nb hydride precipitants in the performance limitation of N-doped cavities was evaluated by TEM temperature dependent studies. Finally, extended characterization of the original cavity cutouts from the N-doped RF tested cavity sheds some light on quenching mechanisms.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB087 Integrated High-Power Tests of Dressed N-doped 1.3 GHz SRF Cavities for LCLS-II 342
 
  • N. Solyak, T.T. Arkan, B.E. Chase, A.C. Crawford, E. Cullerton, I.V. Gonin, A. Grassellino, C.J. Grimm, A. Hocker, J.P. Holzbauer, T.N. Khabiboulline, O.S. Melnychuk, J.P. Ozelis, T.J. Peterson, Y.M. Pischalnikov, K.S. Premo, A. Romanenko, A.M. Rowe, W. Schappert, D.A. Sergatskov, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  New auxiliary components have been designed and fabricated for the 1.3 GHz SRF cavities comprising the LCLS-II linac. In particular, the LCLS-II cavity’s helium vessel, high-power input coupler, higher-order mode (HOM) feedthroughs, magnetic shielding, and cavity tuning system were all designed to meet LCLS-II specifications. Integrated tests of the cavity and these components were done at Fermilab’s Horizontal Test Stand (HTS) using several kilowatts of continuous-wave (CW) RF power. The results of the tests are summarized here.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB104 Flux Expulsion Variation in SRF Cavities 404
 
  • S. Posen, M. Checchin, A.C. Crawford, A. Grassellino, M. Martinello, O.S. Melnychuk, A. Romanenko, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
 
  Treating a cavity with nitrogen doping significantly increases Q0 at medium fields, reducing cryogenic costs for high duty factor linear accelerators such as LCLS II. N-doping also makes cavities more sensitive to increased residual resistance due to trapped magnetic flux, making it critical to either have extremely effective magnetic shielding, or to prevent flux from being trapped in the cavity during cooldown. In this paper, we report on results of a study of flux expulsion. We discuss possible ways in which flux can be pinned in the inner surface, outer surface, or bulk of a cavity, and we present experimental results studying these mechanisms. We show that grain structure appears to play a key role and that a cavity that expelled flux poorly changed to expelling flux well after a high temperature furnace treatment. We further show that after furnace treatment, this cavity exhibited a significant improvement in quality factor when cooled in an external magnetic field. We conclude with implications for SRF accelerators with high Q0 requirements.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB004 Vertical Cavity Test Facility at Fermilab 534
 
  • O.S. Melnychuk, A. Grassellino, F.L. Lewis, J.P. Ozelis, R.V. Pilipenko, Y.M. Pischalnikov, O.V. Pronitchev, A. Romanenko, D.A. Sergatskov, B. Squires
    Fermilab, Batavia, Illinois, USA
 
  After a recent upgrade, the vertical test facility for SRF cavities at Fermilab features a low level RF system capable of testing 325MHz, 650MHz, 1.3GHz, and 3.9GHz cavities, helium liquefying plant, three test cryostats, and the interlock safety system. The cryostats can accommodate measurements of multiple cavities in a given cryogenic cycle in the range of temperatures from 4.2K to 1.4K. We present a description of the components of the vertical test facility. We also discuss cavity instrumentation that is used for diagnostics of cavity ambient conditions and quench characterization.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB048 Fermilab Nb3Sn R&D Program 678
 
  • S. Posen, M. Merio, A. Romanenko, Y. Trenikhina
    Fermilab, Batavia, Illinois, USA
 
  A substantial program has been initiated at FNAL for R&D on Nb3Sn coated cavities. Since early 2015, design, fabrication, and commissioning has been ongoing on a coating chamber, designed for deposition via vapor diffusion. The volume of the chamber will be large enough to accommodate not just R&D cavities, but full production-style cavities such as TeSLA 9-cells. In this contribution, we overview the development of the chamber and we introduce the R&D program planned for the coming years. We discuss research paths that may yield increased maximum fields and reduced residual resistances as well as new applications that could be explored with larger coated cavities.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB049 Cutout Study of a Nb3Sn Cavity 681
 
  • S. Posen, O.S. Melnychuk, A. Romanenko, D.A. Sergatskov, Y. Trenikhina
    Fermilab, Batavia, Illinois, USA
  • D.L. Hall, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The first 1.3 GHz single cell Nb3Sn cavity coated at Cornell was shown in RF measurements at Cornell and FNAL to have poor RF performance. Though subsequent cavities showed much higher quality factors, this cavity exhibited Q0 on the order of 109 caused by strong heating concentrated in one of the half cells. This paper presents an investigation into the source of this excess heating, for the purpose of process improvement, so that similar degradation can be avoided in future coatings. Through the use of temperature mapping both at Cornell and at FNAL, locations with high and low surface resistance were located, cut out from the cavity, and studied with microscopic tools. We present the RF measurements and temperature maps as well as the microscopic analyses, then conclude with plans for continued studies.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB056 Characterization of Nb3Sn Coated Nb Samples 708
 
  • Y. Trenikhina, S. Posen, A. Romanenko
    Fermilab, Batavia, Illinois, USA
  • D.L. Hall
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Liepe
    Cornell University, Ithaca, New York, USA
 
  Nb3Sn has a great potential to replace traditional Nb for the fabrication of SRF cavities. The higher critical temperature of Nb3Sn potentially allows for an increased operational temperature for SRF cavities, which promises cryogenic cost savings. We present preliminary characterization of Nb3Sn layer grown on flat Nb sample prepared by the same chemical vapor deposition method that is used for the cavity coating. SEM, TEM/EDS, TEM imaging and diffraction characterization was used in order to evaluate any chemical and structural defects that could be responsible for the limited quench field and high residual resistance. Variation of local stoichiometry was found in the Nb3Sn layer, which is in line with previous studies. Regions of decreased Sn content can have a lower Tc in comparison to the stoichiometric composition, which may be responsible for the limited performance. AES investigations of the Nb3Sn surface before and after HF-rinse were done in order to explore the mechanism that is responsible for the performance degradation of HF-rinsed Nb3Sn coated cavities.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
WEA1A05 Nanostructure of the Penetration Depth in Nb Cavities: Debunking the Myths and New Findings 937
 
  • Y. Trenikhina, A. Romanenko
    Fermilab, Batavia, Illinois, USA
  • J. Kwon, J.-M. Zuo
    UIUC, Urbana, USA
 
  Nanoscale defect structure within the magnetic penetration depth of ~100 nm is key to the performance limitations of niobium superconducting radio frequency (SRF) cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls at both room and cryogenic temperatures, we directly discover the existence of nanoscale hydrides in SRF cavities limited by the high field Q slope, and show the decreased hydride formation after 120C baking. Crucially, in extended studies we demonstrate that adding 800C hydrogen degassing - both with AND without light BCP afterwards - restores the hydride formation to the pre-120C bake level correlating perfectly with the observed high field Q slope behavior. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120C bake, which contradicts some of the widely used models of niobium surface.  
slides icon Slides WEA1A05 [31.768 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
FRBA03 SRF, Compact Accelerators for Industry & Society 1467
 
  • R.D. Kephart, B.E. Chase, I.V. Gonin, A. Grassellino, S. Kazakov, T.N. Khabiboulline, S. Nagaitsev, R.J. Pasquinelli, S. Posen, O.V. Pronitchev, A. Romanenko, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • S. Biedron, S.V. Milton, N. Sipahi
    CSU, Fort Collins, Colorado, USA
  • S. Chattopadhyay
    Northern Illinois Univerity, Dekalb, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Accelerators developed for Science now are used broadly for industrial, medical, and security applications. Over 30,000 accelerators touch over $500B/yr in products producing a major impact on our economy, health, and well being. Industrial accelerators must be cost effective, simple, versatile, efficient, and robust. Many industrial applications require high average beam power. Exploiting recent advances in Superconducting Radio Frequency (SRF) cavities and RF power sources as well as innovative solutions for the SRF gun and cathode system, a collaboration of Fermilab-CSU-NIU has developed a design for a compact SRF high-average power electron linac. Capable of 5-50 kW average power and continuous wave operation this accelerator will produce electron beam energies up to 10 MeV and small and light enough to mount on mobile platforms, such accelerators will enable new in-situ environmental remediation methods and new applications involving in-situ crosslinking of materials. More importantly, we believe this accelerator will be the first of a new class of simple, turn-key SRF accelerators that will find broad application in industry, medicine, security, and science.  
slides icon Slides FRBA03 [2.342 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)