Paper | Title | Page |
---|---|---|
TUPB059 | A Facility for Magnetic Field Penetration Measurements on Multilayer S-I-S Structures | 716 |
|
||
Funding: STFC and US Department of Energy under contract No. DE-SC0010081. Superconducting RF cavities made of bulk Nb has reached a breakdown field of about 200 mT which is close to the superheating field for Nb. As it was theoretically shown* a multilayer coating can be used to enhance the breakdown field of SRF cavities. The simple example is a superconductor-insulator-superconductor (S-I-S), for example bulk niobium (S) coated with a thin film of insulator (I) followed by a thin layer of a superconductor (S) which could be a dirty niobium**. To verify such an enhancement in a presence of a DC magnetic field at 4.2 K a simple experimental facility was designed, built and tested in ASTeC. The details of experimental setup and results of the measurements will be shown at the conference. *A. Gurevich, APL 88, 012511 (2006) **A. Gurevich, AIP Advances, 5, 017112 (2015) |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB064 | Superconducting Thin Film Test Cavity Commissioning | 731 |
|
||
A radiofrequency (RF) cavity and cryostat dedicated to the measurement of superconducting coatings at GHz frequencies was designed to evaluate surface resistive losses on a flat sample. The test cavity consists of two parts: a cylindrical half-cell made of bulk niobium (Nb) and a flat Nb disc. The two parts can be thermally and electrically isolated via a vacuum gap, whereas the electromagnetic fields are constrained through the use of RF chokes. Both parts are conduction cooled hence the cavity halves are suspended in vacuum during operation. The flat disc can be replaced with a sample, such as a Cu disc coated with a film of niobium or any other superconducting material. The RF test provides simple cavity Q-factor measurements as well as calorimetric measurements of the losses on the sample. The advantage of this method is the combination of a compact cavity with a simple planar sample. The paper describes the RF, mechanical and cryogenic design, and initial commissioning of the system with notes on how any issues arising are to be addressed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB101 | Design of the Thermal and Magnetic Shielding for the LHC High Luminosity Crab-Cavity Upgrade | 852 |
|
||
Before the High Luminosity (Hi-Lumi) upgrade of the Large Hadron Collider (LHC), two pairs of superconducting compact Crab Cavities are to be tested within separate cryomodules, on the Super Proton Synchrotron (SPS) at CERN in 2018 prior to Long Shutdown 2. Two novel side-loaded cryomodules, which allow ease of access for assembly, inspection and maintenance, have been developed for the prototype tests. The cryomodule shielding includes a thermal shield and double layer magnetic shield, consisting of a warm-outer shield, and two cold-inner shields (one per cavity). Various constraints and considerations have led to unique cold shielding, mounted inside the cavity helium vessels, resulting in several design challenges. The shielding adopts and utilises the module’s side-loaded configuration, for continuity and accessibility, while satisfying tight spatial constraints and requirements to meet the functional specification. This paper outlines the design, analysis, manufacture and assembly of the Hi-Lumi SPS test cryomodule’s thermal and magnetic shielding, which are critical to achieving the operational stability. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB038 | Superconducting Coatings Synthetized by CVD/PECVD for SRF Cavities | 643 |
|
||
Finding a way to overcome the acceleration gradient limits that bulk niobium cavities can provide is a major challenge, fundamental to allow the accelerator science field to progress. In order to overcome the accelerating gradient limits of bulk niobium and reduce manufacturing and operation costs, the idea of using thin layers of niobium deposited on a copper cavity is being explored. This approach has lower material cost with higher availability and more importantly higher thermal conductivity. Physical vapour deposition (PVD) method is currently the preferred method to coat superconducting cavities, but its lack of conformity renders complicated shapes such as crab cavities very difficult to coat. By using chemical vapour deposition (CVD) and plasma enhanced chemical vapour deposition (PECVD) it is possible to deposit thin Nb layers uniformly with density very close to bulk material. This project explores the use of PECVD / CVD techniques to deposit metallic niobium on copper using NbCl5 as precursor and hydrogen as a coreagent. The samples obtained were then characterized via SEM, XRD, and EDX as well as assessing their superconductivity characteristics (RRR and Tc) | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB040 | High Power Impulse Magnetron Sputtering of Thin Films for Superconducting RF Cavities | 647 |
|
||
The production of superconducting coatings for radio frequency cavities is a rapidly developing field that should ultimately lead to acceleration gradients greater than those obtained by bulk Nb RF cavities. Optimizing superconducting properties of Nb and Nb compound thin-films is therefore essential. Nb films were deposited by magnetron sputtering in pulsed DC mode onto Si (100) and MgO (100) substrates and also by high impulse magnetron sputtering (HiPIMS) onto Si (100), MgO (100) and polycrystalline Cu. HiPIMS was then used to deposit NbN and NbTiN thin films onto Si(100) and polycrystalline Cu. The films were characterised using scanning electron microscopy, x-ray diffraction, DC SQUID magnetometry and Q factor for a flat thin film sample. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB069 | Engineering Design and Prototype Fabrication of HOM Couplers for HL-LHC Crab Cavities | 1279 |
|
||
The High-Luminosity upgrade for the LHC relies on a set of RF Crab Cavities for reaching its goals. Two parallel concepts, the Double Quarter Wave (DQW) and the RF Dipole (RFD), are going through a comprehensive design process along with preparation of fabrication in view of extensive tests with beam in SPS. High Order Modes (HOM) couplers are critical in providing damping in RF cavities for operation in accelerators. HOM prototyping and fabrication have recently started at CERN. In this paper, an overview of the final shape is provided along with an insight in the mechanical and thermal analyses performed to validate the design of these critical components. Emphasis is also given to test campaigns, material selection, prototyping and initial fabrication that are aimed at fulfilling the highly demanding tolerances of the couplers. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB070 | Design of Dressed Crab Cavities for the HL-LHC Upgrade | 1284 |
|
||
The HL-LHC upgrade relies on a set of RF crab cavities for reaching its goals. Two parallel concepts, the Double Quarter Wave (DQW) and the RF Dipole (RFD), are going through a comprehensive design process along with preparation of fabrication in view of extensive tests with beam in SPS. High Order Modes (HOM) couplers are critical in providing damping in RF cavities for operation in accelerators. HOM prototyping and fabrication have recently started at CERN. In this paper, an overview of the final geometry is provided along with an insight in the mechanical and thermal analyses performed to validate the design of this critical component. Emphasis is also given to material selection, prototyping, initial fabrication and test campaigns that are aimed at fulfilling the highly demanding tolerances of the couplers. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRBA02 | Crab Cavity and Cryomodule Development for HL-LHC | 1460 |
|
||
The HL-LHC project aims at increasing the LHC luminosity by a factor 10 beyond the design value. The installation of a set of RF Crab Cavities to increase bunch crossing angle is one of the key upgrades of the program. Two concepts, Double Quarter Wave (DQW) and RF Dipole (RFD) have been proposed and are being produced in parallel for test in the SPS beam before the next long shutdown of CERN accelerator’s complex. In the retained concept, two cavities are hosted in one single cryomodule, providing thermal insulation and interfacing with RF coupling, tuning, cryogenics and beam vacuum. This paper overviews the main design choices for the cryomodule and its different components, which have the goal of optimizing the structural, thermal and electro-magnetic behavior of the system, while respecting the existing constraints in terms of integration in the accelerator environment. Prototyping and testing of the most critical components, manufacturing, preparation and installation strategies are also described. | ||
![]() |
Slides FRBA02 [4.678 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |