Author: Macpherson, A.
Paper Title Page
MOPB049 High Flux Three Dimensional Heat Transport in Superfluid Helium and Its Application to a Trilateration Algorithm for Quench Localization With OSTs 201
 
  • T. Junginger
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • P. Horn
    TU Dresden, Dresden, Germany
  • T. Koettig, K.C. Liao, A. Macpherson
    CERN, Geneva, Switzerland
  • B.J. Peters
    KIT, Karlsruhe, Germany
 
  Oscillating superleak transducers of second sound can be used to localize quench spots on superconducting cavities by trilateration. However propagation speeds faster than the velocity of second sound are usually observed imped- ing the localization. Dedicated experiments show that the fast propagation cannot be correlated to the dependence of the velocity on the heat flux density, but rather to boiling effects in the vicinity of the hot spot. 17 OSTs were used to detect quenches on a 704MHz one-cell elliptical cavity. Two different algorithms for quench localization have been tested and implemented in a computer program enabling direct crosschecks. The new algorithm gives more consis- tent results for different OST signals analyzed for the same quench spot.  
poster icon Poster MOPB049 [0.901 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB074 CERN’s Bulk Niobium High Gradient SRF Programme: Developments and Recent Cold Test Results 291
 
  • A. Macpherson, K.G. Hernández-Chahín, C. Jarrige, P. Maesen, F. Pillon, K.M. Schirm, R. Torres-Sanchez, N. Valverde Alonso
    CERN, Geneva, Switzerland
  • K.G. Hernández-Chahín
    DCI-UG, León, Mexico
 
  Recent results from the bulk niobium high-gradient cavity development program at CERN are presented, with particular focus on test results for the 704 MHz bulk niobium 5-cell elliptical cavity prototypes produced for the Superconducting Proton Linac (SPL) project. Successive cold tests of bare cavities have been used to refine the cavity preparation and testing process, with all steps done in-house at CERN. Current performance results are discussed with reference to observables such as ambient magnetic field, field emission levels, and quenches.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB080 Diagnostic Developments at CERN’s SRF Testing Facility 778
 
  • A. Macpherson, S. Aull, A. Benoit, P.F. Fernández López, K.G. Hernández-Chahín, C. Jarrige, P. Maesen, K.M. Schirm, R. Torres-Sanchez, R. Valera Teruel
    CERN, Geneva, Switzerland
  • K.G. Hernández-Chahín
    DCI-UG, León, Mexico
  • T. Junginger
    HZB, Berlin, Germany
  • T. Junginger
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  As part of CERN’s re-establishment of an SRF cold testing facility for bulk niobium cavities, diagnostic instrumentation and testing procedures on our vertical cryostat have been upgraded, with particular attention given to quench location, ambient magnetic field control, thermometry and thermal cycling techniques. In addition, preparation and measurement procedures have been addressed, allowing for improved measurement of cavity properties and detailed study of transient effects during the course of cavity testing.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB050 Performance Evaluation of HL-LHC Crab Cavity Prototypes in a CERN Vertical Test Cryostat 1210
 
  • K.G. Hernández-Chahín
    DCI-UG, León, Mexico
  • G. Burt
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C. Christophe, A. Macpherson, M. Navarro-Tapia, R. Torres-Sanchez
    CERN, Geneva, Switzerland
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
  • A.R.J. Tutte
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S. Verdú-Andrés
    BNL, Upton, Long Island, New York, USA
 
  Funding: My work is supported by the Mexican CONACYT(Consejo Nacional de Ciencia y Tecnologia) program through the Mexican national scholarship (Becas Nacionales y Becas Mixtas).
Three proof-of-principle compact crab cavity designs have been fabricated in bulk niobium and cold tested at their home labs, as a first validation step towards the High Luminosity LHC project. As a cross check, all three bare cavities have been retested at CERN, in order to cross check their performance, and cross-calibrate the CERN SRF cold test facilities. While achievable transverse deflecting voltage is the key performance indicator, secondary performance aspects derived from multiple cavity monitoring systems are also discussed. Temperature mapping profiles, quench detection, material properties, and trapped magnetic flux effects have been assessed, and the influence on performance discussed. The significant effort invested in developing expertise in preparation and testing of these crab cavities has already been fruitful for all partners, and more is to come within this ongoing program.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB081 FPC and HOM Coupler Test Boxes for HL-LHC Crab Cavities 1321
 
  • A.R.J. Tutte, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga, A. Macpherson, E. Montesinos
    CERN, Geneva, Switzerland
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
  • B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  The LHC luminosity upgrade will involve the installation of thirty-two 400 MHz SRF crab cavities. The cavities have two variants known as the RF dipole and double quarter-wave crab cavities. Each cavity has a fundamental power coupler (FPC) at 400 MHz and two or three HOM couplers. Before integration onto the cavities it is necessary to condition the FPC, and to measure the transmission on the HOM couplers at low power to ensure the operate as designed, each requiring a special test box. The FPC test box should provide a high transmission between two couplers without creating high surface fields. The low power HOM test boxes should be terminated to a load such that the natural stop and pass-bands of the couplers are preserved allowing the reflection to me measured and compared to simulations. In addition, due to the possibility of high HOM power in the LHC crab cavities, the concept of creating a broadband high power HOM coupler test box in order to condition and test the couplers at high power has been investigated. The Rf design of all test boxes is presented and discussed.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
FRBA02 Crab Cavity and Cryomodule Development for HL-LHC 1460
 
  • F. Carra, A. Amorim Carvalho, K. Artoos, S. Atieh, I. Aviles Santillana, A.B. Boucherie, J.P. Brachet, K. Brodzinski, R. Calaga, O. Capatina, T. Capelli, L. Dassa, T. Dijoud, H.M. Durand, G. Favre, L.M.A. Ferreira, P. Freijedo Menendez, M. Garlaschè, M. Guinchard, N. Kuder, S.A.E. Langeslag, R. Leuxe, A. Macpherson, P. Minginette, E. Montesinos, F. Motschmann, C. Parente, L. Prever-Loiri, D. Pugnat, E. Rigutto, V. Rude, M. Sosin, G. Vandoni, G. Villiger, C. Zanoni
    CERN, Geneva, Switzerland
  • S.A. Belomestnykh, S. Verdú-Andrés, Q. Wu, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • S.U. De Silva, J.R. Delayen, R.G. Olave, R.G. Olave, H. Park
    ODU, Norfolk, Virginia, USA
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • Z. Li
    SLAC, Menlo Park, California, USA
  • K.B. Marinov, S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.H. Nicol
    Fermilab, Batavia, Illinois, USA
  • A. Ratti
    LBNL, Berkeley, California, USA
 
  The HL-LHC project aims at increasing the LHC luminosity by a factor 10 beyond the design value. The installation of a set of RF Crab Cavities to increase bunch crossing angle is one of the key upgrades of the program. Two concepts, Double Quarter Wave (DQW) and RF Dipole (RFD) have been proposed and are being produced in parallel for test in the SPS beam before the next long shutdown of CERN accelerator’s complex. In the retained concept, two cavities are hosted in one single cryomodule, providing thermal insulation and interfacing with RF coupling, tuning, cryogenics and beam vacuum. This paper overviews the main design choices for the cryomodule and its different components, which have the goal of optimizing the structural, thermal and electro-magnetic behavior of the system, while respecting the existing constraints in terms of integration in the accelerator environment. Prototyping and testing of the most critical components, manufacturing, preparation and installation strategies are also described.  
slides icon Slides FRBA02 [4.678 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)