Author: Grimm, C.J.
Paper Title Page
MOPB028 Preservation of Very High Quality Factors of 1.3 GHz Nine Cell Cavities From Bare Vertical Test to Dressed Horizontal Test 149
 
  • A. Grassellino, S. Aderhold, M. Checchin, A.C. Crawford, C.J. Grimm, A. Hocker, M. Martinello, O.S. Melnychuk, J.P. Ozelis, S. Posen, A.M. Rowe, D.A. Sergatskov, N. Solyak, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • D. Gonnella
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.M. Köszegi
    HZB, Berlin, Germany
  • M. Liepe
    Cornell University, Ithaca, New York, USA
 
  In this contribution we will report quality factor evolution of several different nine cell N doped cavities with very high Q. The evolution of the quality factor will be reported from bare to dressed in vertical test to dressed in horizontal test with unity coupling to dressed in horizontal test and CM-like environment/configuration (with RF ancillaries). Cooling studies and optimal cooling regimes will be discussed for both vertical and horizontal tests and comparisons will be drawn also for different styles titanium vessels. Studies of sensitivities to magnetic field in final horizontal configuration have been performed by applying a field around the dressed cavity and varying the cooling; parameters required for a very good flux expulsion will be presented.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB033 LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration 159
 
  • M. Liepe, P. Bishop, H. Conklin, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, T. Gruber, D.L. Hall, G.H. Hoffstaetter, J.J. Kaufman, G. Kulina, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Checchin, A.C. Crawford, A. Grassellino, C.J. Grimm, A. Hocker, M. Martinello, O.S. Melnychuk, J.P. Ozelis, A. Romanenko, A.M. Rowe, D.A. Sergatskov, W.M. Soyars, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • E. Daly, G.K. Davis, M.A. Drury, J.F. Fischer, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515.
The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB041 Cryomodule Testing of Nitrogen-Doped Cavities 182
 
  • D. Gonnella, B. Clasby, R.G. Eichhorn, B. Elmore, F. Furuta, G.M. Ge, D.L. Hall, Y. He, G.H. Hoffstaetter, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Grassellino, C.J. Grimm, J.P. Holzbauer, O.S. Melnychuk, Y.M. Pischalnikov, A. Romanenko, W. Schappert, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: DOE and the LCLS-II High Q Project
The Linac Coherent Light Source-II (LCLS-II) is a new FEL x-ray source that is planned to be constructed in the existing SLAC tunnel. In order to meet the required high Q0 specification of 2.7x1010 at 2 K and 16 MV/m, nitrogen-doping has been proposed as a preparation method for the SRF cavities in the linac. In order to test the feasibility of these goals, four nitrogen-doped cavities have been tested at Cornell in the Horizontal Test Cryomodule (HTC) in five separate tests. The first three tests consisted of cavities assembled in the HTC with high Q input coupler. The fourth test used the same cavity as the third but with the prototype high power LCLS-II coupler installed. Finally, the fifth test used a high power LCLS-II coupler, cavity tuner, and HOM antennas. Here we report on the results from these tests along with a systematic analysis of change in performance due to the various steps in preparing and assembling LCLS-II cavities for cryomodule operation. These results represent one of the final steps to demonstrate readiness for full prototype cryomodule assembly for LCLS-II.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB087 Integrated High-Power Tests of Dressed N-doped 1.3 GHz SRF Cavities for LCLS-II 342
 
  • N. Solyak, T.T. Arkan, B.E. Chase, A.C. Crawford, E. Cullerton, I.V. Gonin, A. Grassellino, C.J. Grimm, A. Hocker, J.P. Holzbauer, T.N. Khabiboulline, O.S. Melnychuk, J.P. Ozelis, T.J. Peterson, Y.M. Pischalnikov, K.S. Premo, A. Romanenko, A.M. Rowe, W. Schappert, D.A. Sergatskov, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  New auxiliary components have been designed and fabricated for the 1.3 GHz SRF cavities comprising the LCLS-II linac. In particular, the LCLS-II cavity’s helium vessel, high-power input coupler, higher-order mode (HOM) feedthroughs, magnetic shielding, and cavity tuning system were all designed to meet LCLS-II specifications. Integrated tests of the cavity and these components were done at Fermilab’s Horizontal Test Stand (HTS) using several kilowatts of continuous-wave (CW) RF power. The results of the tests are summarized here.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB099 Magnetic Foils for SRF Cryomodule 844
 
  • G. Wu, S. Aderhold, S.K. Chandrasekaran, A.C. Crawford, A. Grassellino, C.J. Grimm, J.P. Ozelis, D.A. Sergatskov, A. Vostrikov
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by FRA under DOE contract DE-AC02-07CH11359
High quality factor niobium cavities require minimal residual magnetic field around the high magnetic field region. A typical global magnetic shield takes more material and provides less effective magnetic screening. On the other hand, local magnetic shield has to introduce complex geometries to cover access ports and instrumentation and thermal straps. Local magnetic source and thermal current will increase residual field seen by SRF cavities regardless the complexity of local magnetic shield. Magnetic foils that is cryogenic compatible provides a great benefit to reduce residual magnetic field. This paper will describe the evaluation of such magnetic foils in both vertical and horizontal test.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB014 Mechanical Optimization of High Beta 650 MHz Cavity for Pulse and CW Operation of PIP-II Project 1093
 
  • T.N. Khabiboulline, I.V. Gonin, C.J. Grimm, A. Lunin, T.H. Nicol, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • P. Kumar
    RRCAT, Indore (M.P.), India
 
  The proposed design of the 0.8 GeV PIP-II SC Linac employs two families of 650 MHz 5-cell elliptical cavities with 2 different beta. The β=0.61 will cover the 185-500 MeV range and the β=0.92 will cover the 500-800 MeV range. In this paper we will present update of RF and mechanical design of dressed high beta cavity (β=0.92) for pulse regime of operation at 2 mA beam current. In previous CW version of PIP-II project the mechanical design was concentrated on minimization of frequency shift due to helium pressure fluctuation. In current case of pulse regime operation the main goal was Lorentz force detuning minimization. We present the scope of coupled RF-Mechanical issues and their resolution. Also detailed stress analysis of dresses cavity will be presented.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB027 Welding a Helium Vessel to a 1.3 GHz 9-Cell Nitrogen Doped Cavity at Fermilab for LCLS-II 1132
 
  • C.J. Grimm, J.A. Kaluzny, D.J. Watkins
    Fermilab, Batavia, Illinois, USA
 
  Fermilab has developed a TIG welding procedure that is used attach a nitrogen doped 1.3 GHz 9-cell niobium (Nb) cavity to a titanium (Ti) helium vessel. These cavities will be used in the two prototype cryomodules for the Linac Coherent Light Source (LCLS-II) upgrade at SLAC National Accelerator Laboratory. Discussion in further detail will include setting up TIG welding parameters and tooling requirements for assembly and alignment of the cavity to the helium vessel. The weld designs and glovebox environment produce the best quality TIG welds that meet ASME Boiler and Pressure Vessel Code. The cavity temperature was monitored to assure the nitrogen doping is preserved, and RF measurements are taken throughout the process to monitor the cavity for excessive cell deformation due to heat loads from welding.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB089 HOM Coupler Performance in CW Regime in Horizontal and Vertical Tests 1349
 
  • N. Solyak, M.H. Awida, A. Grassellino, C.J. Grimm, A. Hocker, J.P. Holzbauer, T.N. Khabiboulline, O.S. Melnychuk, A.M. Rowe, D.A. Sergatskov, N. Solyak
    Fermilab, Batavia, Illinois, USA
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Power dissipation in HOM coupler antenna can limit cavity gradient in cw operation. XFEL design of HOM coupler, feedthrough and thermal connection to 2K pipe was accepted for LCLS-II cavity based on simulation results. Recently a series of vertical and horizontal tests was done to prove design for cw operation. In vertical test was found no effect of HOM coupler heating on high-Q cavity performance. In horizontal cryostat HOM coupler was tested up-to 23MV/m in continuous wave mode. Result proves that XFEL HOM coupler meets LCLS-II specifications.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)