Paper |
Title |
Page |
MOPB024 |
SRF Cavity Breakdown Calculation Procedure Using FEA-Software |
140 |
|
- R.A. Kostin, A. Kanareykin
Euclid TechLabs, LLC, Solon, Ohio, USA
- I.V. Gonin
Fermilab, Batavia, Illinois, USA
- E.N. Zaplatin
FZJ, Jülich, Germany
|
|
|
SRF cavity thermal breakdown can be analyzed analytically using thermodynamics equation. This technique is suitable for simple geometries when surface magnetic field variation can be omitted. Thermal radiation effect which is crucial for SRF gun calculations is also hard to implement properly because of complicated geometry. All of these can be overcome by using multiphysics FEA-software. This paper shows the procedure of cavity thermal breakdown calculation in coupled multiphysics analysis with dependable parameters.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|
MOPB087 |
Integrated High-Power Tests of Dressed N-doped 1.3 GHz SRF Cavities for LCLS-II |
342 |
|
- N. Solyak, T.T. Arkan, B.E. Chase, A.C. Crawford, E. Cullerton, I.V. Gonin, A. Grassellino, C.J. Grimm, A. Hocker, J.P. Holzbauer, T.N. Khabiboulline, O.S. Melnychuk, J.P. Ozelis, T.J. Peterson, Y.M. Pischalnikov, K.S. Premo, A. Romanenko, A.M. Rowe, W. Schappert, D.A. Sergatskov, R.P. Stanek, G. Wu
Fermilab, Batavia, Illinois, USA
|
|
|
New auxiliary components have been designed and fabricated for the 1.3 GHz SRF cavities comprising the LCLS-II linac. In particular, the LCLS-II cavity’s helium vessel, high-power input coupler, higher-order mode (HOM) feedthroughs, magnetic shielding, and cavity tuning system were all designed to meet LCLS-II specifications. Integrated tests of the cavity and these components were done at Fermilab’s Horizontal Test Stand (HTS) using several kilowatts of continuous-wave (CW) RF power. The results of the tests are summarized here.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|
THPB005 |
Simulations of 3.9 GHz CW Coupler for LCLS-II Project |
1066 |
|
- I.V. Gonin, T.N. Khabiboulline, A. Lunin, N. Solyak
Fermilab, Batavia, Illinois, USA
|
|
|
LCLS-II linac is based on XFEL/ILC superconducting technology. TTF-III fundamental power coupler for the 3.9 GHz 9-cell cavities has been modifies to satisfy requirements of LCLS-II, operating in CW regime. In this paper we discuss the results of COMSOL analysis of the possible modification of couplers, working at various operating regimes. We present also the results of mechanical study.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|
THPB014 |
Mechanical Optimization of High Beta 650 MHz Cavity for Pulse and CW Operation of PIP-II Project |
1093 |
|
- T.N. Khabiboulline, I.V. Gonin, C.J. Grimm, A. Lunin, T.H. Nicol, V.P. Yakovlev
Fermilab, Batavia, Illinois, USA
- P. Kumar
RRCAT, Indore (M.P.), India
|
|
|
The proposed design of the 0.8 GeV PIP-II SC Linac employs two families of 650 MHz 5-cell elliptical cavities with 2 different beta. The β=0.61 will cover the 185-500 MeV range and the β=0.92 will cover the 500-800 MeV range. In this paper we will present update of RF and mechanical design of dressed high beta cavity (β=0.92) for pulse regime of operation at 2 mA beam current. In previous CW version of PIP-II project the mechanical design was concentrated on minimization of frequency shift due to helium pressure fluctuation. In current case of pulse regime operation the main goal was Lorentz force detuning minimization. We present the scope of coupled RF-Mechanical issues and their resolution. Also detailed stress analysis of dresses cavity will be presented.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|
THPB077 |
Modified TTF3 Couplers for LCLS-II |
1306 |
|
- C. Adolphsen, K. Fant, Z. Li, C.D. Nantista, G. Stupakov, J. Tice, F.Y. Wang, L. Xiao
SLAC, Menlo Park, California, USA
- I.V. Gonin, K. Premo, N. Solyak
Fermilab, Batavia, Illinois, USA
|
|
|
The LCLS-II 4 GeV SC electron linac will use 280 TESLA cavities and TTF3 couplers, modified for CW operation with input power up to about 7 kW. The coupler modifications include shortening the antenna to achieve higher Qext and thickening the copper plating on the warm section inner conductor to lower the peak temperature. Another change is the use a waveguide transition box that is machined out of a solid piece of aluminum, significantly reducing its cost and improving its fit to the warm coupler window section. This paper describes the changes, simulations of the coupler operation (heat loads and temperatures), rf processing results and CW tests with LCLS-II dressed cavities.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|
FRBA03 |
SRF, Compact Accelerators for Industry & Society |
1467 |
|
- R.D. Kephart, B.E. Chase, I.V. Gonin, A. Grassellino, S. Kazakov, T.N. Khabiboulline, S. Nagaitsev, R.J. Pasquinelli, S. Posen, O.V. Pronitchev, A. Romanenko, V.P. Yakovlev
Fermilab, Batavia, Illinois, USA
- S. Biedron, S.V. Milton, N. Sipahi
CSU, Fort Collins, Colorado, USA
- S. Chattopadhyay
Northern Illinois Univerity, Dekalb, Illinois, USA
- P. Piot
Northern Illinois University, DeKalb, Illinois, USA
|
|
|
Accelerators developed for Science now are used broadly for industrial, medical, and security applications. Over 30,000 accelerators touch over $500B/yr in products producing a major impact on our economy, health, and well being. Industrial accelerators must be cost effective, simple, versatile, efficient, and robust. Many industrial applications require high average beam power. Exploiting recent advances in Superconducting Radio Frequency (SRF) cavities and RF power sources as well as innovative solutions for the SRF gun and cathode system, a collaboration of Fermilab-CSU-NIU has developed a design for a compact SRF high-average power electron linac. Capable of 5-50 kW average power and continuous wave operation this accelerator will produce electron beam energies up to 10 MeV and small and light enough to mount on mobile platforms, such accelerators will enable new in-situ environmental remediation methods and new applications involving in-situ crosslinking of materials. More importantly, we believe this accelerator will be the first of a new class of simple, turn-key SRF accelerators that will find broad application in industry, medicine, security, and science.
|
|
|
Slides FRBA03 [2.342 MB]
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|