WE2  —  Wednesday Oral Session WE2   (01-Oct-08   11:00—12:40)

Chair: M. Popovic, Fermilab, Batavia

Paper Title Page
WE201 RF Systems for CW SRF Linacs 709
 
  • S.A. Belomestnykh
    CLASSE, Ithaca, New York
 
 

The talk will provide an overview of the latest developments in rf systems for cw operated SRF linacs, such as CEBAF (in particular, 12 GeV Upgrade), Cornell ERL injector, ELBE, and ERLP at Daresbury.

 

slides icon

Slides

 
WE202 Operational Experience with High Power Beams at the SNS Superconducting Linac 710
 
  • J. Galambos
    ORNL, Oak Ridge, Tennessee
 
 

The latest operational experiences of the SNS 1 GeV superconducting H- linac will be presented as the beam power is increased and losses and beam halo become more important. The talk will include a comparison of the advantages and disadvantages of superconducting cavities. For example, issues arising from the use of different sets of SC cavities at different times will be described, along with the operational consequences on emittance and halo development.

 

slides icon

Slides

 
WE203 Fermilab's Project X 714
 
  • S. Nagaitsev
    Fermilab, Batavia
 
 

The present status and plans for Fermilab's Project X will be reviewed.

 

slides icon

Slides

 
WE204 IH-DTL as a Compact Injector for a Heavy-Ion Medical Synchrotron 715
 
  • Y. Iwata, T. Fujisawa, S. Hojo, N. Miyahara, T.M. Murakami, M. Muramatsu, H. Ogawa, Y. Sakamoto, S. Yamada, K. Yamamoto
    NIRS, Chiba-shi
  • T. Fujimoto, T. Takeuchi
    AEC, Chiba
  • T. Mitsumoto, H. Tsutsui, T. Ueda, T. Watanabe
    SHI, Tokyo
 
 

An interdigital H-mode structure drift tube linac (IH-DTL) with alternating phase focusing (APF) has been developed downstream of a 4-vane type RFQ linac at the National Institute of Radiological Sciences as a compact injector for a heavy-ion medical synchrotron. The rf frequency of both linacs is 200 MHz, and the total length of the two linacs is less than 6 m. They can accelerate heavy ions having a charge to mass ratio of 1/3 up to 4 MeV/u. The accelerated current of 12C4+ is as high as 380 electric μA, and beam transmission through the APF IH-DTL is better than 96%. This compact injector-linac scheme might give a possible solution for a compact cancer therapy facility with heavy-ion beams.

 

slides icon

Slides

 
WE205 Commissioning and Operation of the Injector Linacs for HIT and CNAO 720
 
  • B. Schlitt
    GSI, Darmstadt
 
 

The Heidelberg Ion-Beam Therapy Centre (HIT) is the first dedicated clinical synchrotron facility for cancer therapy using energetic proton and ion beams (C, He and O) in Europe. The accelerator consists of a 7 MeV/u, 217 MHz injector linac and of a 430 MeV/u synchrotron. The installation and commissioning of the linac has been performed gradually in three steps for the ion sources and the LEBT, for the 400 keV/u RFQ, and for the 20 MV IH-type drift tube linac. The initial commissioning of the linac was finished successfully in December 2006, the commissioning of the synchrotron and of the high-energy beam lines with beam was finished for two fixed-beam treatment places in December 2007. Commissioning of the heavy-ion gantry is still going on. The results of the linac commissioning will be reported as well as the experience of more than one year of linac operation. To provide optimum conditions for patient treatment, an intensity upgrade programme has been initiated for the linac. A copy of the HIT linac is presently installed at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia, Italy. The status of the CNAO linac will be also reported.

 

slides icon

Slides