

RF systems for CW SRF linacs

S. Belomestnykh

Cornell University Laboratory for Elementary-Particle Physics

October 1, 2008

D Tetr	aductions CW SDE lines types requirements and		
chal	Challenges		
	nower RF system architecture		
	ower concration entions, klystron vs IOT vs solid state		
amp	amplifier		
	cific projects, operating or under construction:		
	□ JLab FEL & CEBAF		
L band			
	Cornell ERL injector		
UHF band	ERL prototype for electron cooling and eRHIC at BNL		
VHF band	SPIRAL-2		
Future projects and requirements			
🗆 Sum	mary		

Introduction

High/medium/low RF power

VHF to UHF frequencies:

UHF and higher:

Waveguides, losses increase as ~f^3/2 as in addition to skin depth decrease one has to use smaller and smaller size waveguides

All CW SRF linacs use a simple architecture with one RF high power amplifier per cavity. Reasons: flexibility, available RF power sources, requirements to fiels stability, efficiency of RF system, ...

- 1. Calculate beam loading
- 2. Add margin for regulation
- 3. Set requirement for RF power available at the cryomodule for each family of cavities

How RF power spec is set?

4. Set requirement for power available at the high power amplifier taking into account losses in the transmission line elements

October 1, 2008

RF power generation at higher frequencies is Klystron still dominated by vacuum tubes: klystrons and, with the success in Drift Space broadcast applications, IOTs "Buncher" "Catcher" At lower frequencies tetrodes were Cavity Cavitv Density of Electrons traditionally used, but recent progress in Cathode Collector solid state technology will make it the Bo technology of choice in VHF and UHF _____ bands, except when very high power is . Electron Beam required. Uo Anode ΙΟΤ **RF** Output Electron Microwave Input Microwave Output Gun Section Collector Coll, RF Input **RF** Interaction Region Electron gun Output Input Second Third XXX :-Cathode Solid state Klystron Schematic

October 1, 2008

S. Belomestnykh: RF systems for CW SRF linacs

7

Cornell University Laboratory for Elementary-Particle Physics RF power generation options

Choice of RF power source: klystron vs. IOT

1	<i>Injector</i>	Main linac	
ň	Klystron	ΙΟΤ	1.2
	Electron bunches are formed by velocity modulation from the cavities translated into density modulation in the drift spaces	Density modulation directly from cathode	
	Several bunching cavities, optional mod anode	Control grid	Normalized characteristics of output power (vertical axis) vs. drive power (horizontal axis) for klystrons (blue,
	High gain (> 40 dB): low power drive amplifier	Low gain (~22 dB): high power drive amplifier (expensive)	saturating) and IOTs (green, not saturating).
	High efficiency in saturation, which drops rapidly at reduced power	Higher efficiency, which does not drop quickly at reduced power: highly linear device	80 70 50 50 50 50 50 50 50 50 50 5
	Longer, expensive device	Shorter, less expensive tube	
	Can be designed for very high power operation	Output power is limited though R&D for high power tubes are under way	u 10 0 5 10 15 RF Power [kW]

October 1, 2008

JLab SRF linacs

October 1, 2008

- 3 control racks
- 5 racks for klystrons: VKL6811W (CPI) or L491 (L3)
- Single shared HV power supply
- 42 systems in
 CEBAF
- 3 more in FEL
- FEL Injector 2 stand-alone 100 kW klystrons: VKL7966A (CPI)

Klystron configuration

- 8 klystrons per zone
- Powered from single HV power supply
- Circulators, couplers, etc.
- 4 waveguides per penetration to tunnel
- After addressing initial failure modes, present average lifetime of the klystrons is 165,000 hours

JLab klystrons

VLK7811W

- Purchased through competitive bid
- Order of 350 units
- 3 year delivery period
- Specifications
 5 kW CW
 - 11.6 kV @ 1.33 A
 - 32.4% efficiency (min)
 - 38 dB gain
 - 4 cavity design
 - Coaxial output
 - Permanent magnet focusing
 - Potted gun
- Size limitations

L491

- Replacement from competitive bid
- Multi-year order
- Purchase in lots of 10 or 20 units
- 119 received

VKL7966A

- 110 kWatts
- 33.5 kV @ 6.5 A
- 1497 MHz
- -1dB Bandwidth 14 MHz
- Saturated Gain 55.5 dB
- Efficiency 51 %

October 1, 2008

	ALL DATA NAS		Entrio
		6 GeV	12 GeV
	Energy to Halls A,B,C / D	6 GeV	11 GeV / 12 GeV
	Number of passes for Halls A,B,C / D	5	5 / 5.5 (add a tenth arc)
	Duty Factor	CW	CW
	Max. Current to Halls A+C / B	200 μΑ / 5 μΑ	
	Max. Current to Halls A+C / B+D		85 μΑ / 5 μΑ
	Max. Beam Power	1 MW	1 MW
12 GeV CEBAF	Emittance at max. energy (unnormalized, rms):	1 nm-rad	10 nm-rad
Add 5 cryomodules	Energy spread at max. energy (rms)	2.5 x 10 ⁻⁵	2 x 10 ⁻⁴
20 cryomodules Add arc Add arc CHL-2 20 cryomodules CHL-2 20 cryomodules CHL-2 20 cryomodules CHL-2 20 cryomodules CHL-2 CHL-2 20 cryomodules CHL-2	lles ones		

CEBAF 12-GeV Upgrade

10 new zones of RF power for new accelerating structures:

- 80 new tubes, 10 HVPS
- WG network for 80 cavities
- Operating freq. 1497 MHz
- Operating gradients required >17.5 MV/m
- Operating RF power per cavity 13 kW saturated power

		Fast (<1sec)	Slow (>1sec)
Phase	correlated	0.24°	Infinite
Stability (rms)	un-correlated	0.5°	3.0 °
Amplitude	correlated	2.2x10 ⁻⁵	NA
(rms)	un-correlated	4.5x10 ⁻⁴	NA

RF for 12-GeV Upgrade

October 1, 2008

Waveguide layout

ELBE is a multi-purpose facility based on a
CW Superconducting RF linacThermionic GunSRF Photo GunMaximum Energy40 MeV (CW)40 MeV (CW)Bunch Charge77 pC77pc / 2.5 nCBeam Current1 mA CW1 mA

Beam Current	1 mA CW	1 mA
Bunch Length (rms)	1 – 10 ps	4 / 20 ps
Transv. Emittance	2/10 mm mrad (rms)	0.5 / 2.5 mm mrad
Max. Rep.Rate	260MHz@0.77pC	13 MHz
	13 MHz@ 77pC	
Energy Spread	35 keV /55 keV	40 keV

-Injector: Thermionic Gun (250 kV) + two Bunchers (260 MHz, 1.3 GHz)

ELBE linac

ELBE RF system

Klystron VKL7811St (CPI) 6-klystrons running

PS: SMPS 15 kV;2.5A (FuG Rosenheim, Germany) Water: 46 l/min, 6 Bar

Recently installed a new 30 kW CW system built by Bruker, based on the CHK51320W IOT (CPI)

October 1, 2008

Accelerators and Lasers in Combined Experiments(ALICE) is an R&D facility for the development of advanced accelerator systems; from highintensity electron sources, CW SRF linac cryomodules, short pulse FEL undulators and associated optical diagnostics

Parameter		Units
Nominal Gun Energy	350	keV
Injector Energy	8.35	MeV
Circulating Beam Energy	35	MeV
RF Frequency	1.3	GHz
Bunch Repetition Rate	81.25	MHz
Nominal Bunch Charge	80	pC
Maximum Train Length	100	μs
Maximum Train Repetition Rate	20	Hz
Maximum Average Current	13	μA

October 1, 2008

ALICE RF system

0.1ms bunch trains @ 20 Hz repetition rate

October 1, 2008

INJECTOR CRYOMODULE RF SYSTEM

- Five 2-cell SC cavities, each delivering up to 100 kW of RF power to beam
- Five identical RF channels
- RF power is delivered to cavities via twin 50 kWCW input couplers
- RF power delivery system includes an adjustable short slot hybrid and a motorized 2-stub WG phase tuner
- 170 kWCW circulators manufactured by the Ferrite Co.
- Two production input couplers reached maximum RF power level of 61 kW on a coupler test stand
- Six klystrons K3415LS manufactured by e2v, all tested at the factory and at Cornell

Specifications of the ICM RF system

Number of cavities	5
Accelerating voltage per cavity	1 – 3 MV
2-cell cavity length	0.218 m
R/Q (linac definition)	222 Ohm
Qext	4.6×10 ⁴ – 4.1×10 ⁵
RF power per cavity	100 kW
Maximum useful klystron power	≥ 120 kW
Amplitude stability	9.5×10⁻⁴ (rms)
Phase stability	0.1° (rms)

Cornell ERL injector RF

Electron cooler for RHIC

Prototype ERL

Electron cooling is a key component in RHIC II. Cooling gold beams at 100 GeV/nucleon require an electron beam energy of 54MeV and a very high average current of about 200 mA. Future projects such as eRHIC (electron-ion collider) push the operational current to ~500mA at 20 nC bunch charge or higher.

A prototype ERL is a first step towards an ampere class electron cooler. The ERL will consist of a 703.75MHz, 2MeV SRF gun as an injector to the five-cell linac cavity which will accelerate the beam to about 20MeV.

October 1, 2008

SRF gun

1 MW RF for SRF gun

HVPS

IGBT based system that uses a Fast Shut Down Mode (FSDM) instead of a crowbar. Transmitter was manufactured by Continental Electronics.

 broadcast transmitter manufactured by Thomson-BM (former Thales-BM)
 modified version TH793 Thales broadcast IOT

SPIRAL-2 project

•

•

•

•

•

- Utilized power equipment developed for FM market
 - 3, 5.5, 10 & 20 kW amplifiers are available
 - 3 1/8" 50-Ohm transmission line, air cooled
 - Test bench was designed and operated up to 20 kW
- The 10 kW prototype has been used at IPN-Orsay for $\beta = 0.12$ cryomodule test
- Class C amplifiers

October 1, 2008

SPIRAL-2 RF system

RF monitors

10 kW amplifier architecture. Circulators and dummy load are outside the amplifier cabinet, at high power level. Green elements are water cooled.

SOLEIL solid state HPA

Could not resist to mention:

- 180 kW CW solid state amplifier for SOLEIL storage ring based light source (France)
- □ 352 MHz
- very reliable and stable operation
- □ efficiency ~50%

More and more future projects are based on CW superconducting RF technology.

Here is a sample list of such projects that utilize L band SRF linacs and will require medium to high power CW RF systems:

> STARS (BESSY) ERL@CESR (Cornell) KEK ERL 0.5 MW drive linac (TRIUMF) WiFEL (Wisconsin)

- CW SRF linacs are used for a wide variety of scientific applications form nuclear physics to light source facilities to radio isotopes production.
- In all machines presented in this talk a simple architecture with one RF high power amplifier per cavity is used. Reasons: flexibility, available RF power sources, requirements to fiels stability, efficiency of RF system, ...
- Most of high-β linacs operate in L band. UHF band is left for ampere-class machines. IOTs successfully compete with klystrons at medium power levels due to their better efficiency and linearity.
- Solid state amplifiers are rapidly becoming the technology of choice in VHF band at medium power levels and making way into UHF and L bands (though they are still pricey and not very efficient there.)
- □ There are more CW SRF linac based projects under consideration at different laboratories.

Acknowledgement

I would like to thank people who provided information, slides and pictures for this talk: C. Hovater (Jlab) T. Powers (JLab) H. Buettig (Rossendorf) P. McIntosh (Daresbury) A. Zaltsman (BNL) M. Di Giacomo (GANIL) R. Laxdal (TRIUMF)

End of talk

October 1, 2008

Additional slides

October 1, 2008

LAMBDA developed a precision 75 kW, 25 kV switching HVPS for a klystron amplifier (reported at PAC'07)

Output Voltage Range:	-10 to -25kV
Output Current:	0 to 4A max
Average Power:	75kW
Ripple and noise:	<0.015% p-p
Efficiency:	90%
Power factor:	0.92
Stability:	10ppm/°C
Load regulation:	0.0001%
Line regulation:	0.0001%
Stored energy:	7.5J

Features:

- Compact design
- CW or pulse operation
- 35kW CW or 80 kW pulse
- Easy installation
- Fast tube replacement

(down time less than 1 hour)

• VSWR 1.3:1

IOT manufacturers: THALE

Operating specifications

	CW	Pulsed		
Continuous wave output power	16	30	kW	
Frequency range	1.3	1.3	GHz	
Bandwidth at –1 dB	≥ 3	≥ 3	MHz	
Grid voltage	-100	-90	V	
Cathode current	0.93	1.47 ⁽¹⁾	А	
Cathode voltage	28.5	33	kV	
Gain	20.9	22 (1)	dB	
Efficiency	60.4	61 ⁽¹⁾	%	
CW input power	146	190 ⁽¹⁾	W	
Filament voltage	12	12	V	
Filament current	16.5	16.5	А	
Maximum ratings				
Continuous wave output power	20	32 (2)	kW	
Input power	200	200	W	
Anode dissipation	25	25	kW	
Anode voltage	34	34	kV	

Gain variation

Phase variation

October 1, 2008

S. Belomestnykh: RF systems for CW SRF linacs

LINA

Frequency	1.3GHz
Output Power	16kW
Beam Voltage	<28kV
Efficiency	>60%
Gain	>20dB
Class of operation	B or AB

Figure 3: Efficiency versus output power at a beam voltage of 25kV.

Lifetime estimate

IOT manufacturers: e2v

- Standard warranty period is 10,000 hrs
- Average life of 1213 broadcast IOTs is 31,700 hrs (for all e2v tubes that have recorded installation and removal date, tubes still in service are not included)