TH1  —  Thursday Oral Session TH1   (02-Oct-08   08:30—10:30)

Chair: R. Garoby, CERN, Geneva

Paper Title Page
TH101 Superconducting RF R&D Toward High Gradient 725
 
  • C.M. Ginsburg
    Fermilab, Batavia
 
 

High-beta superconducting rf elliptical cavities are being developed in large numbers for several accelerator projects including the International Linear Collider (ILC). In recent years, the understanding of cavity performance limitations has improved significantly, leading to better than 40 MV/m in some cavities. However, further improvement is needed to reach reliably the 31.5 MV/m operating gradient proposed for the ILC Main Linac cavities. World-wide R&D on the cavity gradient frontier includes improved surface cleaning and smoothing treatments, development of alternative cavity shapes and materials, and novel cavity manufacturing techniques. Substantial progress has been made with diagnostic instrumentation to understand cavity performance limitations. Some highlights of the efforts in superconducting rf R&D toward achieving higher gradients in high-beta elliptical cavities are reviewed.

 

slides icon

Slides

 
TH102 SRF Developments for Ion Acceleration 730
 
  • G. Olry
    IPN, Orsay
 
 

The talk will provide an overview of the SRF development toward the acceleration of light and heavy ions including QWRs, HWRs, spoke and CH cavities.

 

slides icon

Slides

 
TH103 Developing Facilities for SNS Cryomodule Performance Improvements 735
 
  • J. Mammosser
    ORNL, Oak Ridge, Tennessee
 
 

Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy
Superconducting rf cavity facilities are currently being developed at SNS aimed at addressing the limitations and availability of installed cavities and the direct support of the future power upgrade plans. Efforts are directed towards development of in situ repairs and processing techniques to increase available linac gradients. Procedures have been developed and implemented and the results will be presented for the repair of four cryomodules in the last year. Cryomodule testing facilities are being developed to further understand the collective limitations of installed cavities and spare cryomodule production is underway to develop and fabricate two high beta and one medium beta cryomodules. The direction and status of SRF facilities will be presented.

 

slides icon

Slides

 
TH104 An Overview of Linac Ion Sources 740
 
  • R. Keller
    LANL, Los Alamos, New Mexico
 
 

Funding: This work was supported by the US Department of Energy under Contract Number DE-AC52-06NA25396
For the purpose of this presentation, the term Linac is narrowed down to comprise rf machines that accelerate ion beams at duty factors between about 5% and continuous operation. This group of Linacs includes proton and H- machines as well as accelerators utilizing multi-charged heavy ions, mostly for nuclear physics applications. Main types of ion sources serving these Linacs include Electron Cyclotron Resonance (ECR) sources, filament and rf driven multi-cusp sources, Penning (PIG) sources and duoplasmatrons. This presentation does not strive to attain encyclopedic character but rather to highlight current trends in performance parameters, major lines of development and type-specific limitations and problems, with emphasis on ECR and multi-cusp sources. The main technical aspects being discussed are ion production and beam formation.

 

slides icon

Slides