AN OVERVIEW OF LINAC ION SOURCES

Roderich Keller

AOT-ABS Group at Los Alamos National Laboratory, Los Alamos, NM, USA

2008 Linac Conference, Victoria, B. C., Canada Sept. 28 – Oct. 3, 2008

Operated by Los Alamos National Security, LLC for NNSA

Scope Limitations for this Presentation

- Sources for high-duty-factor rf Linacs
 - 5% cw
- Tutorial character
 - Taking the 'Sourcery' out of Ion Sources

No attempt at encyclopedic format

- Fundamentals
- Major lines of development
- Key operational parameters
- General and type-specific limitations and problems
- Peak sample results included
- Not included
 - Penning (PIG)
 - Duoplasmatrons
 - Duopigatrons
 - Beam formation issues in detail

LEBTs

٠

Contents

- Introduction (already given)
- Particle feeding methods
- Plasma generation
 - Filament driven
 - Rf driven
- Multicusp sources
 - Filament driven
 - Rf driven

ECR Ion Sources

- ECRIS for Highly charged lons
- ECRIS as Charge Breeders
- ECRIS for High-current Beams

Particle Feeding Methods (1)

Materials in pure, gaseous form

- Needle valve
- Regulated valve
 - May need fast-pulsed valve to reduce average pressure in LEBT

Operated by Los Alamos National Security, LLC for NNSA

Particle Feeding Methods (2)

Non-gaseous elements

- Gaseous compounds
 - e. g., **C** from CO₂
- Liquid compounds with sufficient vapor pressure
 - e.g., **B** from BF₃
 - Many compounds contain an **aggressive component**
 - **Erosion** of source parts, especially hot filaments
 - Increased sparking rate in extraction system

Oven

- Need to limit re-condensation material fed into source
 - Oven should be coldest of internal source parts
 - Dual heating systems
- Might benefit from auxiliary gas to stabilize discharge

Particle Feeding Methods (3)

CHORDIS with oven

Particle Feeding Methods (4)

Cathode sputtering

- Technique well suited for high-melting materials
 - Dedicated sputtering electrode
 - Biasing existing electrode
 - Made from, or coated with, material of interest
 - Needs auxiliary gas to release desired particles from electrode
 - Self-sputtering does occur but is not a stable process
 - Sputtering current regulates share of desired species in plasma
 - Maximum 10-20%
 - Need to limit re-condensation of sputtered material
 - Similar solution as with oven

Operated by Los Alamos National Security, LLC for NNSA

Plasma Generation (1)

Creating and maintaining a discharge (NOT: arc)

- Sustained by dc power and thermionic cathodes (filaments)
 - Continuous (dc)
 - Pulsed
- Sustained by rf power
 - Continuous (cw)
 - Pulsed (modulated)
- Choice of discharge voltage and current values influences plasma composition
 - Total beam current
 - Singly or multiply charged ions
- Cathode filaments
 - Tungsten, tungsten/rhenium or tantalum wire
 - Lifetime limitations
 - Resistance-increase data for diagnostics
 - Earth-alkaline oxide paste on nickel or platinum mesh
 - Used for hydrogen feeding gas (low sputtering rate)

Plasma Generation (2)

Filament lifetime assessment for dc discharges, R. Keller et al., NIBS Conf. 2008

Typical resistance-increase plot – heating power was varied twice

Slide 9

Rf Sustained Discharges (1)

Fundamentals

- Typical frequencies 1-13.56 MHz
- No fast-eroding components such as filaments
- Need impedance matcher
 - Amplifier typically 50 Ohm
 - Plasma about 1 Ohm
- Ignition poses a problem
 - Cw operation mode: Raise gas pressure for ignition
 - Pulsed operation mode: several options
 - Add low-power cw amplifier
 - Decouple power flow
 - Protect cw amplifier from reflected power as plasma impedance changes
 - Add spark-gap chamber or 'plasma gun' combined with pulsed gas valve

Operated by Los Alamos National Security, LLC for NNSA

Rf Sustained Discharges (2)

'High' pressure discharge chamber added to facilitate ignition

Operated by Los Alamos National Security, LLC for NNSA

0 LO

Rf Sustained Discharges (3)

Antenna options

- Antenna needs to be insulated from plasma
 - Avoid arcing, meltdown
- Internal antenna
 - Porcelain coated
 - Single- or multi-layer
 - Incompatibility of thermal expansion coefficients leads to cracks
 - Water/vacuum accident waiting to happen

External antenna

- Major part of discharge chamber made from Al₂O₃ or, better AlN
- Needs to be engineered for desired duty factor
 - Heat transfer
 - Maximum temperature gradient
 - May have to be protected from discharge heat load by Faraday shield

Rf Sustained Discharges (4)

Ion source with external antenna

Multicusp ('Bucket') Sources (1)

Fundamentals

- Stable plasma confinement achieved by minimum-B configuration
 - Magnetic fields increase with increasing distance from discharge center
 - Increases ionization probability for electrons
 - Significantly reduces plasma-loss area
 - Facilitates space-charge compensation of extracted beam (no oscillations)
 - Realized by lining discharge chamber with permanent magnets
 - High-current sources (8 20 magnets around)
 - Permanent-magnet or electro-magnet sextupoles
 -> ECR sources
 - Higher number of magnets enlarges 'field-free' cross-sectional area
 - Uniform plasma density allows use of wide multi-aperture extraction systems

Multicusp Sources (2)

Heavy ions

See: R. Keller, 1984 Linac Conf.

Slide 15

Operated by Los Alamos National Security, LLC for NNSA

NATIONAL LABORATORY

EST.1943

Multicusp Sources (3)

H⁺/D⁺ generation fundamentals

- Need to be optimized for atomic ion (H+/D+) production
- Molecular ions compete for share in plasma
- Cannot simply push discharge voltage to optimum value as with multi-charged (heavy) ions
- Need to excite vibrational states of H₂/D₂ molecules
 - Requires low-energy electrons
- Install hot liner or BN liner
 - Creates 'pre-dissociation'
- Install magnetic dipole filter across discharge chamber
 - Keeps energetic electrons from penetrating across filter field into secondary chamber
 - Low-energy electrons pushed through by elastic collisions, ExB drift
- Alternative: ECR source (see below)

Operated by Los Alamos National Security, LLC for NNSA

Multicusp Sources (4)

H⁻/D⁻ generation fundamentals

- Volume- and surface production, see M. Bacal, Nucl. Fusion (2006)
- Volume production issues similar to (H+/D+) ion production
 - Install magnetic dipole filter across discharge chamber
 - Keeps energetic electrons from penetrating across filter field into secondary chamber
 - Low-energy electrons pushed through by elastic collisions, ExB drift
 - Need to excite ro-vibrational states of H₂/D₂ molecules
 - Requires even lower low-energy electrons
- Even 10-eV electrons and neutrals can destroy H⁻/D⁻
 - Provide short paths to outlet aperture
 - Less-than-proportional scaling of beam current vs. aperture area
- Surface production relies on resonant-tunneling charge-exchange of H⁻/D⁻ from surface with low work function
 - Cesiated Mo etc.
 - Barium

Operated by Los Alamos National Security, LLC for NNSA

Multicusp Sources (5)

H⁻/D⁻ generation by volume production

Multicusp Sources (6)

H⁻/D⁻ Generation by surface production

LANSCE H⁻ Ion Source with cesiated, biased converter

0.8 ms-60/120 Hz operation

Up to 25 mA beam current from 9.8-mm aperture

300-eV beam energy inside source

R. L. York, R. R. Stevens et al., LANL Los Alamos

Operated by Los Alamos National Security, LLC for NNSA

Electron Cyclotron-Resonance Sources (1)

Fundamentals, see R. Geller, ECRIS Workshop (1987)

- Filament-free
 - Very long times-between-services even at cw conditions
- Microwave driven in 2.45-28 GHz frequency range
- Longitudinal magnetic mirror field
- Resonance condition B_{res} [T] = 0.0354 f [GHz]
- Highly charged ions
 - Low gas pressure < 10⁻⁶ Torr
 - High density
 - **High** magnetic field for plasma confinement
 - Low magnetic field better for extracting more beam current
 - Transverse confinement by sextupole
 - Cut-off electron density $n_e [cm^{-3}] \le 1.25 \times 10^{10} f^2 [GHz^2]$
- High-current beams
 - Higher gas pressure ~ 10⁻³ Torr

Overdense wave penetration mode

Operated by Los Alamos National Security, LLC for NNSA

Electron Cyclotron-Resonance Sources (2)

VENUS ECR Source for highly charged ions

Electron Cyclotron-Resonance Sources (3)

Issues and trends with ECR Sources for highly charged ions

- Hollow-beam formation often noted
 - Poor transport properties
- X-ray generation becomes increasingly severe issue as plasma density, frequency and microwave power increase
 - Requires external radiation shielding
 - Jeopardizes internal equipment (superconducting coils)
- Ion production appears to depend on resonance volume
 - Surface area of 'resonance cigar' times electron Larmor radius
 - Two-frequency microwave power
 - Broadband amplifier with Traveling-Wave Tube
 - Small frequency adjustments beneficial L. Celona et al., ECRIS Conf. (2008)
 - Improves microwave mode selection
 - Increased power efficiency, about 30%
 - Improved beam profile
 - Hollow triangle -> solid 'star'

Operated by Los Alamos National Security, LLC for NNSA

Electron Cyclotron-Resonance Sources (4)

Charge Breeders

- Serving Secondary Beam Facilities
 - FAIR, RIA/FRIB
- Collects radioactive ions from primary target
- Ionizes captured ions to higher charge states
 - Improve efficiency of secondary accelerator
- Main aspects
 - Modular design minimizes radioactive waste upon turnover
 - Beam-current output depends on primary accelerator and target
 - Particle efficiency critical

Peak result from ANL Argonne, see G. Savard et al., ECRIS Conf. 2008

¹³³Cs²⁰⁺ at 3% ⁸⁵Rb¹⁵⁺ at 3.6% particle efficiency

Operated by Los Alamos National Security, LLC for NNSA

Electron Cyclotron-Resonance Sources (5)

High-current ECR Sources

- Penetration of microwaves into overdense plasma
 - T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309 (1991)
 - Utilized by microwave driven proton source
 - 2.45 GHz frequency
 - About 1 kW cw power
 - 0.0875 T ECR resonance field
 - Solenoids or permanent magnets used
 - Beam optics similar to 'field-free' extraction systems
 - No transverse plasma-confinement configuration

Peak result from LEDA project, Los Alamos

120 mA transportable dc beam with 90% proton share from 8.6-mm outlet aperture See J. D. Sherman et al., ICIS Conf. (2001)

Operated by Los Alamos National Security, LLC for NNSA

Recent Ion Source Information

Meetings and Journals

- International Conference on Ion Sources
 - Rev. Scientific Instrum. 79 (2008, latest published issue)
- International Workshop on ECR Ion Sources
 - AIP Conf. Proceedings 749 (2005, latest published issue)
 - Latest workshop held 2 weeks ago in Chicago
- International Conference on Negative Ions, Beams and Sources
 - AIP Conf. Proceedings 925 (2007, latest published issue) Meeting formerly called Int. Symp. on Production and Neutralization of Negative lons and Beams
- Nucl. Instrum. Methods in Phys. Research A and B
- Physical Review Special Topics Accelerators and Beams
- IEEE Transactions on Plasma Science

Applied Physics Letters

Slide 25

