

SRF developments for ion acceleration

Guillaume OLRY - IPN Orsay

I- Upgrade of existing facilities <u>Under construction</u>: ISAC-II phase 2 (Triumf), ATLAS upgrade (ANL), PIAVE-ALPI upgrade (INFN-Legnaro), HI Booster (IUAC) <u>Cavity design & prototyping</u> : Re-Accelerator (MSU), HIE-ISOLDE (CERN)

II- New facilities <u>Under construction</u>: SARAF (Soreq), SPIRAL2 (GANIL) Cavity design & prototyping: HINS (Fermilab)

<u>Cavity design & prototyping</u>: HINS (Fermilab), EURISOL (IPN Orsay & INFN-Legnaro), EUROTRANS (IPN Orsay & Frankfurt)

TRIUMF

ISAC-II: Phase 2

• Addition of 20 QWRs, beta=0.11, 141 MHz, housed in 3 modules \rightarrow + 20 MV to the ISAC-II ions

- Fabrication with a local company, PAVAC
- Two copper models to test fabrication, assembly sequence and frequency tuning procedure
- Inner conductor modified \rightarrow lower Epk/Ea & Bpk/Ea

2 bulk Niobium prototypes produced (freq. within 10 kHz of goal)
BCP etching and HPWR done at TRIUMF
Vertical tests: both cavities meet the specs.
First 6 QWRs at the end of October 2008

ANL

ATLAS

 Increase the total voltage by 14 MV max by adding of 7 cavities housed in one module (replacing existing one)

- Separate cavity and cryomodule vacua
- Focusing: one SC solenoid
- 7 QWRs (beta 0.14, 109 MHz)
- Design gradient: 8 MV/m
- Electropolishing & HPWR done at ANL

Courtesy of M.P. Kelly

• Clean assembly of the cryomodule \rightarrow Dec. 2008 • Moved into the ATLAS tunnel in January 2009 for installation and test

THP025 M.P. Kelly

INFN-Legnaro

MOP022 P.A. Posocco

Upgrade of the existing 5 cryostats (housing 4 QWRs each) & addition of a new cryomodule (with 4 new QWRs)
 → Double the total voltage from 10 to 20 MV

Common vacuum & warm QP

 New RF amplifiers and couplers to achieve the new design gradient: 5 MV/m (formerly, 3 MV/m for the 20 "old" QWRs)

 4 QWRs, beta 0.047, 80 MHz with also a new tuning system (modified ISAC-II tuner)

- Cavity #1 meet the specs
- Cavity #2 under test

PIAVE-ALPI

- Cavities #3 & #4 are ready
- Validation of the new cryomodule: end of 2008
- Upgrade of the "old" cryostats (one by one) till the end of 2009

IUAC New Delhi

 Successful acceleration of ion beams through 1st module housing 8 QWRs, beta 0.08, 97 MHz (ANL collab.) end of 2007

Ea>~3 MV/m

Next upgrade: 2 more modules (housing 8 QWRs + 1 SC solenoid each).

Local production and in-house EB welding, Electropolishing, HPWR and heat treatment
Modifications: helium jacket top plate, power coupler, mechanical tuner, damping of vibrational

modes (with SS balls)

 Final assembly and installation by the end of 2008

TH202 A. Roy

Linac08 conference, Victoria, BC, Canada / September 29 - October 3, 2008 THP017 B.K. Sahu

7

I- Upgrade of existing facilities <u>Under construction</u>: ISAC-II phase 2 (Triumf), ATLAS upgrade (ANL), PIAVE-ALPI upgrade (INFN-Legnaro), HI Booster (IUAC) <u>Cavity design & prototyping</u> : Re-Accelerator (MSU), HIE-ISOLDE (CERN)

II- New facilities <u>Under construction</u>: SARAF (Soreq), SPIRAL2 (GANIL) Cavity design & prototyping: HINS (Fermilab)

<u>Cavity design & prototyping</u>: HINS (Fermilab), EURISOL (IPN Orsay & INFN-Legnaro), EUROTRANS (IPN Orsay & Frankfurt)

THP033 W. Hartung

Courtesy of W. Hartung Linac08 conference, Victoria, BC, Canada / 2nd cryomodule housing 6 QWRs with beta 0.041

9

CERN

HIE-ISOLDE

<u>Stage 1</u>: final energy up to 5.5 MeV/u with 10 QWRs, beta 0.12, 101 MHz

 <u>Stage 2</u>: final energy up to 10 MeV/u with 10 QWRs, beta 0.075, 101 MHz & 5 more QWRs, beta 0.12, 101 MHz

- 5 cavities & 1 SC solenoid/cryomodule (common vacuum)
- Nb/Cu sputtering technology

• 1 copper model of the 'high' beta 0.12 ready by the end of October 2008

- Drift tubes faces modified for steering
- compensation

Sputtering chamber

MOP028 M. Pasini

I- Upgrade of existing facilities <u>Under construction</u>: ISAC-II phase 2 (Triumf), ATLAS upgrade (ANL), PIAVE-ALPI upgrade (INFN-Legnaro), HI Booster (IUAC) <u>Cavity design & prototyping</u> : Re-Accelerator (MSU), HIE-ISOLDE (CERN)

II- New facilities <u>Under construction</u>: SARAF (Soreq), SPIRAL2 (GANIL) Cavity design & prototyping: HINS (Fermilab)

<u>Cavity design & prototyping</u>: HINS (Fermilab), EURISOL (IPN Orsay & INFN-Legnaro), EUROTRANS (IPN Orsay & Frankfurt)

Soreq

SARAF

MO023 I. Mardor

Prototype Superconducting Module

- Phase 1: p 4MeV & d 5.2 MeV at the PSM exit
 - 6 HWR, beta 0.09, 176 MHz
 - Focusing: 3 SC solenoids
- Specs: P<10 W/cavity @ Epk=25 MV/m (Ea=5MV/m)
- Cold tests @ Soreq since sept 2007
 - <Ea>~6 MV/m
 - Low Q-value on 3 cavities
 - Ponderomotive oscillations (>Epk=16 MV/m) → should be fixed with piezo tuner
 - No major perturbations from microphonics

Cavity		vertical Test			10/2007 PSM Test			03/2008 PSM Test	
location	name	max field	losses at	Q at	max field	losses at	Q at	losses at	Q at
		[MV/m]	25 MV/m	25 MV/m	[MV/m]	25 MV/m	25 MV/m	25 MV/m	25 MV/m
			[W]			[W]		[\vv]	
HWR1	LB-2	40	7,3	6,0E+08	30	6,3	7,0E+08	6	8,00E+08
HWR2	LB-3	43	7,3	6,0E+08	28	31,4	1,4E+08	9	5,00E+08
HWR3	LB-5	33	6,3	7,0E+08	32	22,0	2,0E+08	24	2,00E+08
HWR4	LB-7	46	6,3	7,0E+08	29	22,0	2,0E+08	39	2,00E+08
HWR5	LB-4	36	5,5	8,0E+08	31	11,0	4,0E+08	13	4,00E+08
HWR6	LB-6	38	7,3	6,0E+08	29	14,7	3,0E+08	42	1,00E+08
		sum	40.0			107,3		133	

Courtesy of I. Mardor

The module is now on-line, "almost" ready for beam tests

GANIL

ď

SPIRAL2

TU102 T. Junquera

 Specs: P<10 W/cav @ Epk=32 MV/m (Ea=6.5MV/m) • QWR "A" series: fab. just started \rightarrow 2 first cavities in march 2009

- Opening bottom plate, tuning by deformation
- Vertical test: Ea=11 MV/m (low Qo for 2nd cavity)
- Cryomodule test: November 2008
- QWR "B" series: fab. under progress, 3/16 delivered, 1 tested (maybe two) \rightarrow last cavity in March 2010
 - Welded bottom plate, tuning by plunger
 - Vertical test 1st series cavity: Ea max=9.3 MV/m
 - Cryomodule test: Ea max=8.5 MV/m @ 10 kW (over-coupling), tuning system OK.

1.E+10

Longuevergne

QWR "A" beta 0.07 1.E+10 Prototype QWR A (beta 0.07) 1st prototype Qualifying QWR A(beta 0.0) 1.E+09 2nd, cavity 1.E+08 10 3 9 11 5 E_{aco} (MV/m)

QWR "B" beta 0.12

I- Upgrade of existing facilities <u>Under construction</u>: ISAC-II phase 2 (Triumf), ATLAS upgrade (ANL), PIAVE-ALPI upgrade (INFN-Legnaro), HI Booster (IUAC) <u>Cavity design & prototyping</u> : Re-Accelerator (MSU), HIE-ISOLDE (CERN)

II- New facilities <u>Under construction</u>: SARAF (Soreq), SPIRAL2 (GANIL) Cavity design & prototyping: HINS (Fermilab)

<u>Cavity design & prototyping</u>: HINS (Fermilab), EURISOL (IPN Orsay & INFN-Legnaro), EUROTRANS (IPN Orsay & Frankfurt)

MO301 R.C. Webber

Fermilab

HINS

SC H⁻ linac with Single-Spoke Resonator from 10 MeV to 60 MeV (beta 0.22 & beta 0.4, 325 MHz)
4 beta 0.22, SSR prototyped:

Two first cavities delivered (1 tested)

SSR1-03 & 04 are produced by IUAC

Vertical test (4.4 K): Epk~70 MV/m !, Bpk~115 mT
MP barriers between 2 and 11 MV/m (confirmed by simulations)

SSR1-02 by Roark

Spoke all-around-the-world									
Tests results @ 4K									
*Lacc = (number of gaps x optimal beta x lambda)/2									
Lab	Туре	Frequency	quency MHz] Optimal beta	Ea*	Epk	Bpk	Voltage		
		[MHz]		[MV/m]	[MV/m]	[mT]	[MV]		
IDN Oreav	Single	352	0.20	4.8	32	69	0.82		
IFIN OISay	Single	352	0.36	8.1	38	104	2.49		
	Single	855	0.28	4.4	24	56	0.26		
	Single	345	0.29	8.8	40	106	2.21		
	Single	345	0.40	7.0	44	117	2.44		
	Double	345	0.40	8.6	40	79	4.49		
	Triple	345	0.50	7.7	28	88	6.65		
	Triple	345	0.62	7.9	31	95	8.70		
FZ-Juelich	Triple	760	0.20	8.6	43	87	1.36		
	Single	350	0.21 (EZ01)	7.5	38	100	1.35		
	Single	350	0.21 (EZ02)	7.2	37	96	1.30		
Fermilab	Single	325	0.22 (SSR1-01)	12.0	70) 113	2.43		
Mean values for ~350 MHz spoke cavities 8.0 41 97 18									

HIPPI/FZJuelich

- Triple Spoke cavity, beta 0.48, 352 MHz
- EB welding at FZJuelich
- Optimized for pulsed operation
- First test in vertical cryostat

BCP etching @ CEA/Saclay

Thank you

TRIUMF: B. Laxdal Fermilab: L. Ristori ANL: M. Kelly **MSU: W. Hartung, M. Doleans** FZ-Juelich: R. Toelle, E. Zaplatin **INFN-Legnaro: A. Facco** Soreq: I. Mardor, D. Berkovits, J. Rodnizki Frankfurt: H. Podlech **CERN: M. Pasini IUAC: A. Roy IPN Orsay: H. Saugnac CEA Saclay: P. Bosland**

Spoke all-around-the-world									
Tests results @ 4K									
*Lacc = spoke cavity owner's definition									
Lab	Туре	Frequency [MHz]	Optimal beta	Ea* [MV/m]	Epk [MV/m]	Bpk [mT]	Voltage [MV]		
	Single	352	0.20	9.7	32	69	0.82		
IPN Orsay	Single	352	0.36	12.5	38	104	2.49		
	Single	855	0.28	7.2	24	56	0.26		
	Single	345	0.29	12.5	40	106	2.21		
ANI	Single	345	0.40	11.0	44	117	2.44		
ANL	Double	345	0.40	11.5	40	79	4.49		
	Triple	345	0.50	10.2	28	88	6.65		
	Triple	345	0.62	10.6	31	95	8.70		
FZ-Juelich	Triple	760	0.20	8.6	43	87	1.36		
	Single	350	0.21 (EZ01)	13.5	38	100	1.35		
	Single	350	0.21 (EZ02)	13.5	37	96	1.30		
Fermilab	Single	325	0.22 (SSR1-01)	18	70	113	2.43		
Mean values for ~350 MHz spoke cavities				12.2	41	97	21		

TRIUMF

ISAC-II: Phase 1

• Boosts ion energy by 20 MV to provide stable and RIB's > Coulomb Barrier

• 20 "medium beta" QWRs housed in five cryomodules (INFN-Legnaro collab.):

- Common vacuum
- Focusing: one SC solenoid
- Bulk niobium, 106 MHz
- 8 beta 0.057 & 12 beta 0.071
- <Eacc>~7.2 MV/m (design 6 MV/m)

• ISAC-II accelerator is running <u>with no</u> <u>deterioration in gradient performance</u> since its commissioning in Spring 2006

