A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Wu, J.

Paper Title Page
TUP049 The Electron Bunch Initial Energy Profile on a Seeded Free Electron Laser Performance 509
 
  • J. Wu, A. Chao
    SLAC, Menlo Park, California
  • J. Bisognano
    UW-Madison/SRC, Madison, Wisconsin
 
 

Funding: The work of AWC and JW was supported by the US Department of Energy under contract DE-AC02-76SF00515. The work of JB was supported by National Science Foundation Award No. DMR-0537588.
A single-pass high-gain X-ray free electron laser (FEL) calls for a high quality electron bunch. In particular, for a seeded FEL, and for a cascaded harmonic generation (HG) FEL, the electron bunch initial energy profile uniformity is crucial to preserve an FEL narrow bandwidth. After the acceleration, compression, and transport, the electron bunch energy profile entering the undulator can acquire temporal non-uniformity. During the cascading stages, the electron bunch energy profile is also not uniform temporally entering the next stage. We study the effects of the electron bunch initial energy profile on the FEL performance, cascaded HG FEL or single stage FEL amplifier. Concrete examples are discussed for seeded FEL projects being studied.

 
TUP050 Design and Optimization of Electron Bunch Acceleration and Compression 512
 
  • J. Wu, P. Emma
    SLAC, Menlo Park, California
  • R.A. Bosch, K.J. Kleman
    UW-Madison/SRC, Madison, Wisconsin
 
 

Funding: The work of PE and JW was supported by the US Department of Energy under contract DE-AC02-76SF00515. The work of RAB and KJK was supported by National Science Foundation Award No. DMR-0537588.
For electron bunches driving a hard X-ray free electron laser, the electron bunch high qualities should be preserved as well as possible in the acceleration and compression. For typical configuration, the electron bunch is accelerated in rf cavity and compressed in magnetic chicane. Besides the rf curvature and high-order optics terms in a chicane, the collective effects during the bunch acceleration, transportation, and compression can further distort the phase space and even lead to instability. Among these collective effects, the coherent edge radiation dominates and governs the overall bunch property; while the longitudinal space charge is the main cause for microbunching instability. Random jitter couples to the wakefields and affect the final bunch properties. We study these effects and discuss their implication to general linac design and optimization.

 
TUP048 Identifying Jitter Sources in the LCLS Linac 506
 
  • F.-J. Decker, R. Akre, A. Brachmann, W.S. Colocho, Y.T. Ding, D. Dowell, P. Emma, J.C. Frisch, A. Gilevich, G.R. Hays, P. Hering, Z. Huang, R.H. Iverson, K.D. Kotturi, A. Krasnykh, C. Limborg-Deprey, H. Loos, S. Molloy, H.-D. Nuhn, D.F. Ratner, J.L. Turner, J.J. Welch, W.E. White, J. Wu
    SLAC, Menlo Park, California
 
 

The beam stability for the Linac Coherent Light Source (LCLS) Free-Electron Laser (FEL) at Stanford Linear Accelerator Center (SLAC) are critical for X-Ray power, pointing, and timing stability. Studies of the transverse, longitudinal, and intensity stability of the electron beam are presented. Identifying these sources by different methods like correlations, frequency spectrum analysis and other methods is critical for finally eliminating or reducing them.

 

slides icon

Slides

 
FR102 Commissioning of the LCLS Linac 1095
 
  • H. Loos, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, D. Dowell, P. Emma, J.C. Frisch, A. Gilevich, G.R. Hays, P. Hering, Z. Huang, R.H. Iverson, C. Limborg-Deprey, A. Miahnahri, S. Molloy, H.-D. Nuhn, J.L. Turner, J.J. Welch, W.E. White, J. Wu
    SLAC, Menlo Park, California
  • D.F. Ratner
    Stanford University, Stanford, Califormia
 
 

Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
Construction of the Linac Coherent Light Source (LCLS) X-ray free electron laser at the Stanford Linear Accelerator Center (SLAC) is nearing completion. A new injector and upgrades to the existing accelerator were installed in two phases in 2006 and 2007. We report on the commissioning of the injector, the two new bunch compressors at 250 MeV and 4.3 GeV, and transverse and longitudinal beam diagnostics up to the end of the existing linac at 13.6 GeV. The commissioning of the new transfer line from the end of the linac through the undulator beam line to the main dump is scheduled to start in January 2009 and for the undulator magnets in March 2009 with first light to be expected by May 2009.

 

slides icon

Slides