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Abstract

A single-pass high-gain x-ray free electron laser (FEL)
calls for a high quality electron bunch. In particular, for a
seeded FEL, and for a cascaded harmonic generation (HG)
FEL, the electron bunch initial energy profile is crucial for
generating an FEL with a narrow bandwidth. After the
acceleration, compression, and transportion, the electron
bunch energy profile entering the undulator can acquire
temporal non-uniformity. We study the effects of the elec-
tron bunch initial energy profile on the FEL performance.

VLASOV-MAXWELL ANALYSIS FOR AN
INITIAL VALUE PROBLEM

The photoinjector generated electron bunch has a very
small energy spread and small emittance. During the accel-
eration, bunch compression, and transportation, the elec-
tron bunch can acquire RF curvature, second order effect
in the chicane, and collective effects, which will all lead to
energy profile to be nonuniform. Further more, the electron
bunch is subject to microbunching instability [1]. Thus, the
electron bunch coming into the undulator can have an en-
ergy modulation. We study the energy profile nonunifor-
mity on the free electron laser (FEL).

To analyze the start-up of a seeded FEL amplifier we use
the coupled set of Vlasov and Maxwell equations which de-
scribe the evolution of the electrons and the radiation fields
[2]. This approach is used as well for the Self-Amplified
Spontaneous Emission (SASE) FEL [3]. We will work with
a one-dimensional system analytically.

Vlasov-Maxwell Equations

We follow the analysis and notation of Refs. [3, 4, 2].
Dimensionless variables are introduced as Z = kwz, θ =
(k0 + kw)z − ω0t, where k0 = 2π/λ0, ω0 = k0c, and
kw = 2π/λw with λ0 being the radiation wavelength, λw

being the undulator period, and c being the speed of light
in vacuum. We also introduce p = 2(γ − γ0)/γ0 as the
measure of energy deviation, with γ the Lorentz factor of
an electron in the electron bunch, and γ0 the resonant en-
ergy defined by λ0 = λw(1 + K2/2)/(2γ2

0), for a planar
undulator, where the undulator parameterK ≈ 93.4Bwλw

with Bw the peak magnetic field in Tesla and λ the un-
dulator period in meter. The electron distribution function
is ψ(θ, p, Z) with ψ0(θ, p, Z) describing the slow varying
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unperturbed component. The FEL electric field is written
as E(t, z) = A(θ, Z)ei(θ−Z) with A(θ, Z) being the slow
varying envelope function.

The one-dimensional linearized Vlasov-Maxwell equa-
tions are,

∂ψ

∂Z
+ p

∂ψ

∂θ
− 2D2

γ2
0

(
Aeiθ +A∗e−iθ

) ∂ψ0

∂p
= 0, (1)

and,

(
∂

∂Z
+

∂

∂θ

)
A(θ, Z) =

D1

γ0
e−iθ

∫
dpψ(θ, p, Z), (2)

where in SI units, D1 = eawn0[JJ ]/(2
√

2kwε0), D2 =
eaw[JJ ]/(

√
2kwmc

2), with e and m being the charge and
mass of the electron; ε0 ≈ 8.85 × 10−12 F/m being the
vacuum permittivity; n0 being the electron beam density;
and [JJ ] = J0[a2

w/2(1 + a2
w)]− J1[a2

w/2(1 + a2
w)] where

the dimensionless rms undulator parameter aw ≡ K/
√

2.
Equation (1) gives a general solution as

ψ(θ, Z, γ) ≈ ψ0(θ − pZ, γ)

+
∫ Z

0

dZ ′ 2D2

γ2
0

A[θ − p(Z − Z ′), γ]ei[θ−p(Z−Z′)]

× ∂ψ0[θ − p(Z − Z ′), γ]
∂p

. (3)

Plugging Eq. (3) into Eq. (2), we have

(
∂

∂Z
+

∂

∂θ

)
A(θ, Z) =

D1

γ0
e−iθ

∫
dpψ0(θ − pZ, γ)

+ (2ρ)3e−iθ

∫
dp

∫ Z

0

dZ ′A[θ − p(Z − Z ′), γ]

× ei[θ−p(Z−Z′)] ∂ψ0[θ − p(Z − Z ′), γ]
∂p

, (4)

with (2ρ)3 = (2D1D2)/γ3
0 , the Pierce parameter ρ [5, 6].

Initial Energy Imperfectness

To model an energy imperfectness in the electron bunch
coming into the undulator, we assume that the initial distri-
bution function is

ψ0 = δ[p+ g(θ0)] = δ[p+ g(θ − pZ)], (5)

where g(θ0) is a general function.
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The Maxwell equation is further rewritten after perform-
ing a partial integral

(
∂

∂Z
+
∂

∂θ

)
A(θ, Z) =

D1

γ0

∑

j

e−iθj+ig(θj)Zδ(θ − θj)

+i(2ρ)3
∫ Z

0

dZ ′(Z − Z ′)eig(θ)(Z−Z′)A(θ, Z ′), (6)

where the initial discrete radiators (electrons) are modeled
as

∑
j δ(θ − θj) for the longitudinal coordinates.

To further work on Eq. (6), we now introduce the
Laplace transform,

f(θ, s) =
∫ ∞

0

dZe−sZA(θ, Z). (7)

With this, Eq. (6) is now casted in the frequency domain as

∂f(θ, s)
∂θ

+
(
s− i(2ρ)3

[s− ig(θ)]2

)
f(θ, s)

= A(θ, 0) +
D1

γ0

∑

j

e−iθjδ(θ − θj)
s− ig(θj)

, (8)

which yields the general solution as

f(θ, s)=
∫ θ

−∞
dθ′e

−s(θ−θ′)+
∫

θ

θ′
i(2ρ)3

[s−ig(θ′′)]2
dθ′′

×
⎡

⎣A(θ′, 0) +
D1

γ0

∑

j

e−iθjδ(θ′ − θj)
s− ig(θj)

⎤

⎦ . (9)

Notice that, in the square bracket in Eq. (9), the first term
A(θ, 0) characterizes the initial seed for a seeded FEL,
while the second term models the Self-Amplified Sponta-
neous Emission (SASE) FEL. In the following, let us fo-
cus on a seeded FEL, so that the second term in the square
bracket will be neglected.

Initial Sinusoidal Energy Modulation For electron
bunch experienced microbunching instability, there can be
an energy modulation as

γ = γ0 + εm sin[ωm(t− t0)], (10)

where ωm characterizes the energy modulation. The initial
distribution function is then

Ψ0 = δ[p+ η sin(ωηθ0)], (11)

where η ≡ 2εm/γ0 and ωη ≡ ωm/ω0. For such a sinu-
soidal modulation, we have

∫ θ

θ′

i(2ρ)3

[s− iη sin(ωηθ′′)]
2 dθ

′′ ≈ i(2ρ)3(θ − θ′)
s2

+
2η(2ρ)3 [cos(ωηθ) − cos(ωηθ

′)]
ωηs3

. (12)

Up to this stage, let us throw away the SASE term, and
keep only the seed in Eq. (9).

f(θ, s) ≈
∫ θ

−∞
dθ′A(θ′, 0) (13)

× e
−s(θ−θ′)+ i(2ρ)3(θ−θ′)

s2 +
2η(2ρ)3 [cos(ωηθ)−cos(ωηθ′)]

ωηs3 .

The inverse Laplace transform then gives us the FEL field
envelope as

A(θ, Z) =
∫

c

ds

2πi
esZf(θ, s)

≈
∫

c

ds

2πi
esZ

∫ θ

−∞
dθ′A(θ′, 0) (14)

× e
−s(θ−θ′)+ i(2ρ)3(θ−θ′)

s2 +
2η(2ρ)3 [cos(ωηθ)−cos(ωηθ′)]

ωηs3 .

Obviously, once we know the initial seed field envelope
A(θ, 0), we can obtain the seeded FEL field envelope
A(θ, Z) along the undulator.

The double integral in Eq. (14) can be evaluated by first
performing the contour integral to get,

A (θ, Z) =
∫ ∞

0

dξA (θ − ξ, 0)G (θ, ξ, Z, s, η) , (15)

with the Green function G (θ, ξ, Z, s, η) and the corre-
sponding phasor F (θ, ξ, Z, s, η) defined as

G (θ, ξ, Z, s, η)

≡
∫

c

ds

2πi
e

s(Z−ξ)+
i(2ρ)3ξ

s2 +
2η(2ρ)3 [cos(ωηθ)−cos[ωη(θ−ξ)]]

ωηs3

≡
∫

c

ds

2πi
exp [F (θ, ξ, Z, s, η)] . (16)

The Green function can be estimated by saddle point ap-
proximation. The saddle point ss is found from

dF (θ, ξ, Z, s, η)
ds

∣∣
∣
∣
s=ss

= 0, (17)

and the Green function is approximated as

G (θ, ξ, Z, s, η) ≈ exp [F (θ, ξ, Z, ss, η)]

[2πF ′′ (θ, ξ, Z, ss, η)]
1/2

(18)

∼=−eiπ/12e
i1/32ρZ− i1/39(θ−Z/3)2ρ

2Z − i2η{cos(ωηθ)−cos[ωη(θ−ξ)]}
ωη

√
2πZ/ρ

.

For an initial Gaussian seed,

E(t, z = 0) = E0e
−iω0t−α0t2 = E0e

iθ−θ2α0/ω2
0

=⇒ A(θ, 0) = E0e
−θ2α0/ω2

0 , (19)

where α0 = 1/(4σ2
t0) with σt0 being the initial seed rms

pulse duration. According to Eq. (15), the FEL pulse is

A (θ, Z)=E0
−eiπ/12

√
2πZ/ρ

e
i1/32ρZ− i1/39(θ−Z/3)2ρ

2Z − i2η cos(ωηθ)
ωη
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×
∫ θ

−∞
dθ′e

− θ′2α0
ω2
0

+
i2η cos(ωηθ′)

ωη

≈ E0ω0
−eiπ/12

√
2α0Z/ρ

(
1 +

i2η
ωη

e
−ω2

0ω2
η

4α0

)

× e
i1/32ρZ− i1/39(θ−Z/3)2ρ

2Z − i2η cos(ωηθ)
ωη . (20)

It is interesting to find that to the first order in η, in
the exponential function, the microbunching energy mod-
ulation only leads to a pure phase modulation, but does
not affect the power, except the small correction term
(i2η/ωη) exp[−ω2

0ω
2
η/(4α0)] in front of the exponential

function.

Bandwidth As we find above, the first order correction
is a pure phase modulation, we would like to investigate
this phase modulation on the FEL coherence. Recall that,
one of the most important purposes of a seeded FEL is to
generate transform limited light, let us now find the FEL
spectrum:

Ẽ(ω, z) ≡ 1√
2π

∫
dtE(t, z)eiωt. (21)

Notice that E(t, z) ∼ e−iω0t, hence the Fourier transform
is defined as in Eq. (21).

First, we rewrite E(t, z) to have t-dependence explicit,
i.e.,

E(t, z) ≈ E0ω0
−eiπ/12

√
2α0Z/ρ

(
1 +

i2η
ωη

e
−ω2

0ω2
η

4α0

)

× eik0Z/kw−6i1/3k0ρZ/kw−9i1/3k2
0ρZ/(2k2

w)

× e[9i1/3ρω0/(vgkw)−i]ω0t−9i1/3ρω2
0t2/(2Z)

×
[
1 − iη

ωη

(
eiωηθ + e−iωηθ

)
]

≡ A(z)e[9i1/3ρω0/(vgkw)−i]ω0t−9i1/3ρω2
0t2/(2Z)

×
[
1 − iη

ωη

(
eiωηθ + e−iωηθ

)
]

≡ A(z)ei1/3Bz2/v2
ge−iω0t−i1/3B(t−z/vg)2

×
[
1 − iη

ωη

(
eiωηθ + e−iωηθ

)
]
, (22)

where vg = ω0/(k0 + 2kw/3).
Completing the integral in Eq. (21), we have

Ẽ(ω, z) =
A(z)√
2Bi1/3

e
i5/3

[
(ω−ω0)− 2i4/3Bz

vg

]2

4B

×
{

1 − iη

ωη
ei5/3ω2

0ω2
η/(4B) (23)

×
[
eiz(k0+kw−ω0/vg)ωη−i5/3(ω−ω0)ω0ωη/(2B)

+ e−iz(k0+kw−ω0/vg)ωη+i5/3(ω−ω0)ω0ωη/(2B)
]}

.

The FEL energy density is then I(ω, z) ≡
Ẽ(ω, z)Ẽ∗(ω, z), where Ẽ∗(ω, z) is the complex
conjugate of Ẽ(ω, z).

We can then compute

〈ω(z)〉 ≡
∫
ωI(ω, z)∫ I(ω, z)

(24)

≈ ω0{1 + 2ηe−
ω2
0ω2

η

4
√

3B sin[(k0 + kw − ω0/vg)ωηz]}.

Likewise, the standard deviation is

σω(z) ≡
√∫

ω2I(ω, z)∫ I(ω, z)
− (〈ω(z)〉)2

≈ 2B − ηω2
0ωηe

−ω2
0ω2

η

4
√

3B cos[(k0 + kw − ω0/vg)ωηz]√
2
√

3B
≡ 2B − C cos[(k0 + kw − ω0/vg)ωηz]√

2
√

3B
≡ 2B + D

√
2
√

3B
. (25)

Notice that, for η = 0, σω(z) =
√

3
√

3ρω2
0/(kwz) is the

well-known rms bandwidth of the FEL Green function for
a coasting electron beam [3, 7, 8].

To be explicit, we have

C
2B =

ηωηkwz

9ρ
e
−ω2

ηkwz

18
√

3ρ . (26)

Recall that ωη = ωm/ω0, i.e., the ratio of the microbunch-
ing frequency to the FEL frequency, the most serious degra-
dation will be at the first stage, where the FEL frequency is
the lowest. Also, due to the n2 amplification, the first stage
is always the most serious stage. Also notice that, the ratio
in Eq. (26) is maximum at z = 18

√
3ρ/(kwω

2
η).

As an conclusion, in this paper, we study the effect on
a seeded FEL performance due to an initial energy non-
uniformity when the electron bunch enters the undulator.
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