Author: Huang, H.
Paper Title Page
MOPMN029 Spin Resonance Strength Calculation Through Single Particle Tracking for Rhic 763
 
  • Y. Luo, Y. Dutheil, H. Huang, F. Méot, V.H. Ranjbar
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with code DEPOL, which numerically integrate through the whole ring based on analytical approximate formula. In this article, we calculate the spin resonance strength by performing Fourier transformation to the actual transverse magnetic field seen by a single particle travelling through the ring. Comparison is made between the results from this method and DEPOL and other approaches.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMN030 Proton Spin Tracking with Symplectic Integration of Orbit Motion 766
 
  • Y. Luo, Y. Dutheil, H. Huang, F. Méot, V.H. Ranjbar
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Symplectic integration for orbital motion had been adopted in SimTrack which has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently spin tracking for protons has been implemented on top of the orbit motion in this code. In this article, we will explain the implementation of spin motion using Thomas-BMT equation, and benchmark with other spin tracking codes currently used for RHIC. Possibility and remedy for very-long term particle tracking, such as on the RHIC energy acceleration, is also explored.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY011 Operation Experience of p-Carbon Polarimeter in RHIC 956
 
  • H. Huang, E.C. Aschenauer, G. Atoian, A. Bazilevsky, O. Eyser, D. Kalinkin, J. Kewisch, Y. Makdisi, S. Nemesure, A. Poblaguev, W.B. Schmidke, D. Smirnov, D. Steski, K. Yip, A. Zelenski
    BNL, Upton, Long Island, New York, USA
  • I.G. Alekseev, D. Svirida
    ITEP, Moscow, Russia
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The spin physics program in Relativistic Heavy Ion Collider (RHIC) requires fast polarimeter to monitor the polarization evolution on the ramp and during stores. Over past decade, the polarimeter has evolved greatly to improve its performance. These include dual chamber design, monitoring camera, Si detector selection (and orientation), target quality control, and target frame modification. The preamp boards have been modified to deal with the high rate problem, too. The ultra thin carbon target lifetime is a concern. Simulations have been carried out on the target interaction with beam. Modification has also been done on the frame design. Extra caution has been put on RF shielding to deal with the pickup noises from the nearby stochastic cooling kickers. This paper summarizes the recent operation performance of this delicate device.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI049 Polarized Proton Beam for eRHIC 2360
 
  • H. Huang, F. Méot, V. Ptitsyn, T. Roser
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI053 Polarization Simulations in the RHIC Run 15 Lattice 2372
 
  • F. Méot, H. Huang, Y. Luo, V.H. Ranjbar, G. Robert-Demolaize
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run~14 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI060 RHIC Polarized Proton-Proton Operation at 100 GeV in Run 15 2384
 
  • V. Schoefer, E.C. Aschenauer, G. Atoian, M. Blaskiewicz, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, Y. Dutheil, W. Fischer, C.J. Gardner, X. Gu, T. Hayes, H. Huang, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, P.H. Pile, A. Poblaguev, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, S.M. White, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  The first part of RHIC Run 15 consisted of nine weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance this run. The largest effort consisted of commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses therefore raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a functioning e-lens which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic capture scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF046 Operation of the RHIC Injector Chain with Ions from EBIS 3804
 
  • C.J. Gardner, J.G. Alessi, E.N. Beebe, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, J.J. Butler, C. Carlson, W. Fischer, D.M. Gassner, D. Goldberg, T. Hayes, H. Huang, P.F. Ingrassia, J.P. Jamilkowski, N.A. Kling, J.S. Laster, D. Maffei, M. Mapes, I. Marneris, G.J. Marr, A. Marusic, D.R. McCafferty, K. Mernick, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, S. Perez, A.I. Pikin, D. Raparia, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, P. Thieberger, J.E. Tuozzolo, B. Van Kuik, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Since 2012 gold and all other ions for the RHIC injector chain have been provided by an Electron Beam Ion Source (EBIS). The source is followed by an RFQ, a short Linac, and a 30 m transport line. These components replace the Tandem van de Graaff and associated 840 m transfer line. They provide ions at 2 MeV per nucleon (kinetic energy) for injection into the AGS Booster. The setup and operation of Booster and AGS with various ions from the new source are reviewed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)