Author: Boine-Frankenheim, O.
Paper Title Page
MOPRI106 Simulation Study of Beam Halo Collimation in the Heavy-ion Synchrotron SIS 100 870
SUSPSNE047   use link to see paper's listing under its alternate paper code  
 
  • I.A. Prokhorov
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim, I. Strašík
    GSI, Darmstadt, Germany
 
  Funding: Work is supported by German Federal Ministry of Education and Research (BMBF) contract no. 05P12RDRBM
The FAIR synchrotron SIS-100 will be operated with high-intensity proton and heavy-ion beams. The collimation system should prevent beam loss induced degradation of the vacuum, activation of the accelerator structure and magnet quenches. A conventional two-stage betatron collimation system is considered for the operation with protons and fully-stripped ions. Particle tracking and ion-collimator interaction simulations of the collimation system were performed. The angular and momentum distributions of the scattered halo particles were described using analytical models and numerical tools like ATIMA and FLUKA. MADX was used for the multi-pass tracking simulations. The results obtained for the collimation cleaning efficiency as a function of the ion species and beam energy together with the detailed beam losses distributions along the ring circumference are presented. This work highlights the main aspects of the collimation of fully-stripped ion beams in the intermediate energy range using conventional two-stage systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME031 Radiation Pressure Acceleration and Transport Methods 1422
 
  • P. Schmidt, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim, O. Boine-Frankenheim, I. Hofmann
    GSI, Darmstadt, Germany
  • I. Hofmann
    HIJ, Jena, Germany
  • I. Hofmann
    IAP, Frankfurt am Main, Germany
 
  Funding: HGS-HIRe for FAIR, HIC for FAIR, Technische Universität Darmstadt, FB 18 TEMF
Several projects worldwide such as LIGHT at GSI focus on laser ion acceleration. With the development of new laser systems and advances in the target production a new acceleration mechanism has become of interest: The Radiation Pressure Acceleration (RPA). An ultra short high intense laser pulse hits a very thin foil target and the emerging plasma is ideally accelerated as one piece (light sail regime). The ions reach kinetic energies up to GeV and nearly solid body densities. In this work, the distribution and transport of a RPA plasma is studied. 1D and 2D PIC simulations (software: VSim) are carried out to obtain the phase space distribution of the plasma. The results are compared to fluid models (software: FiPy and USim). A reference model an RPA plasma is obtained which is then used for advanced transport studies. Transport mechanisms (active and passive) are studied, such asμlenses and foil stacks.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI017 Artificial Collisions, Entropy and Emittance Growth in Computer Simulations of Intense Beams 1588
 
  • O. Boine-Frankenheim, I. Hofmann, J. Struckmeier
    GSI, Darmstadt, Germany
 
  During particle tracking with self-consistent space charge artificial collision between the macro-particles lead to diffusion-like, numerical effects. The artificial collisions generate a stochastic noise spectrum. As a consequence the entropy and the emittance of the particle beam can growth along periodic focusing structures. The growth rates depend on the number of simulation macro-particles and on the space charge tune shifts. For long-term tracking studies the numerical diffusion can lead to incorrect beam loss predictions. In our study we present analytical prediction for the numerical friction and diffusion in 2D and 3D simulations. For simple focusing structures with derive a relation between the friction coefficient and the entropy growth. The scaling of the friction coefficient with the macro-particle number and the space charge tune shift is obtained from 2D and 3D simulations and compared to the analytic predictions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI045 Beam Coupling Impedance Simulation in the Frequency Domain for the SIS100 Synchrotron 1665
 
  • U. Niedermayer, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim
    GSI, Darmstadt, Germany
 
  For the quantification of intensity thresholds due to coherent instabilities and beam induced heating in the FAIR synchrotron SIS100 a detailed knowledge of transverse and longitudinal beam coupling impedance is required. Due to the rather long proton and heavy-ion bunches, the relevant spectrum is below 100MHz. For the computation of beam coupling impedances in the low frequency regime, frequency domain methods are more advantageous than (explicit) time domain methods. We show the setup of a 2D finite element code that allows to compute the impedance for arbitrary longituninally homogeneous beam and structure shapes. Perfectly conducting pipes, a dispersive ferrite tube, and thin resistive beam pipe serve as test cases. The influence of the beam velocity on the coupling impedance is studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO092 Stochastic Noise Effects in High Current PIC Simulation 3101
 
  • I. Hofmann, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim, I. Hofmann
    GSI, Darmstadt, Germany
 
  The numerical noise inherent to particle-in-cell simulation of 3D high intensity bunched beams is studied with the TRACEWIN code and compared with the analytical model by Struckmeier (1994). The latter assumes the six-dimensional rms emittance or rms entropy growth can be related to Markov type stochastic processes due to temperature anisotropy and the artificial "collisions" caused by using macro-particles and calculating the space charge effect. Our entropy growth confirms the dependency on bunch temperature anisotropy as predicted by Struckmeier. However, we also find noise generation by the non-Liouvillean effect of the Poisson solver grid, which exists in periodic focusing systems even when local temperature anisotropy is absent - contrary to predictions by Struckmeier's model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI019 Incoherent and Coherent Effects of Space Charge Limited Electron Clouds 1594
 
  • F.B. Petrov, O. Boine-Frankenheim, O.S. Haas
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: Work is supported by the BMBF under contract 05H12RD7.
Recent studies show that the space charge limited (saturated) electron cloud generated by relativistic bunches has strongly inhomogeneous distribution. In particular, a dense electron sheath is formed near the pipe wall. This feature modifies the stopping powers and the microwave transmission compared with the uniform cloud case. In this paper we investigate further the influence of the space charge limited electron cloud on relativistic bunches. In particular, we focus on the incoherent tune spread and compare the results with the homogeneous cloud case. We derive analytical expressions governing the pinch dynamics of the saturated cloud in round geometry. The contribution of the electron cloud sheath to the wake fields is investigated as well. Findings of the analytical theory are then successfully compared with numerical particle-in-cell simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO060 Beam-beam Effect on the BTF in Bunched Beams 3011
SUSPSNE053   use link to see paper's listing under its alternate paper code  
 
  • P.A. Görgen, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
  • W. Fischer
    BNL, Upton, Long Island, New York, USA
 
  We present studies on the transverse baseband Beam Transfer Functions (BTFs) in bunched beams at high energies. The goal of the work is to evaluate whether transverse BTFs can be used to diagnose the tune spread arising from transverse nonlinearities such as the beam-beam effect and space charge. We employ an analytic expression to the BTFs of beams under a transverse nonlinear lens arising from a bi-Gaussian charge distribution. We obtain agreement between a simulation model of an electron-lens like configuration and the analytic results. The tune spread for this scenario can be recovered by means of a fit against the analytic expectation. The results are compared with measurements where the beam-beam effect acts as a substitute for the electron lens. A similar behaviour of the BTF is observed. This allows the conclusion that the transverse BTF can be used to diagnose tune spread from an electron-lens. Finally we discuss the problems that arise when trying to recover the tune spread from BTFs of arbitrary non-Gaussian beams and in the presence of coherent beam-beam modes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)