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Abstract
We present studies on the transverse baseband Beam

Transfer Functions (BTFs) in bunched beams at high ener-

gies. The goal of the work is to evaluate whether transverse

BTFs can be used to diagnose the tune spread arising from

transverse nonlinearities such as the beam-beam effect and

space charge. We employ an analytic expression to the BTFs

of beams under a transverse nonlinear lens arising from a bi-

Gaussian charge distribution. We obtain agreement between

a simulation model of an electron-lens like configuration

and the analytic results. The tune spread for this scenario

can be recovered by means of a fit against the analytic expec-

tation. The results are compared with measurements where

the beam-beam effect acts as a substitute for the electron

lens. A similar behaviour of the BTF is observed. This

allows the conclusion that the transverse BTF can be used

to diagnose tune spread from an electron-lens. Finally we

discuss the problems that arise when trying to recover the

tune spread from BTFs of arbitrary non-Gaussian beams

and in the presence of coherent beam-beam modes.

ANALYTIC EXPECTATIONS
In 2014, two electron lenses were put in operation at

Brookhaven National Laboratorys Relativistic Heavy Ion

Collider (RHIC) [1], with the goal of partly compensating

the incoherent tune shift from the beam-beam effect in proton

operation. We discuss measuring the incoherent transverse

tune spread induced by an electron lens via transverse BTF.

The BTF is defined as the ratio R(Ω) of the amplitude of
the beams linear response Aresp to an excitation at frequency
Ω of amplitude Adrive.

R(Ω) =
Aresp
Adrive

(1)

Transverse BTFs can be measured in the horizontal and ver-

tical direction. For coasting beams with a particle frequency

distribution ψ(ω) that is independent of the particle ampli-
tude in the direction of the BTF, the BTF can be calculated

analytically by integration over the single particle response

functions modeled as harmonic oscillators [2].

R(Ω) ∝ −iπψ(Ω) + P.V.
∫ ∞

−∞
1

ω −Ωψ(ω)dω (2)

The imaginary part of R is proportional to ψ, allowing to
read the tune distribution directly from the BTF.

However the situation for the BTF of a beam undergoing

incoherent tune spread from a transverse source such as an

electron lens is different: The particle betatron frequency
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is a function of the particle amplitude. The BTF can be

calculated as [3]:

Ri (Ω) = c ·
� ∞

0

1

Ω − ωi

(
Jx , Jy

) Jidψ
dJi

dJxdJy (3)

Wherein Jx , Jy are the transverse action angle variables,
ψ the distribution function in action angle variables, c a
constant absorbing any constant factors and ωi (Jx , Jy ) a
particles mean betatron frequency as a function of its action

angle amplitude. i is either x or y, the direction of the BTF
measurement.

For Eq. 3 we can not give a general like Eq. 2. If the

shape of the nonlinearity giving rise to the tune spread and

the transverse beam distribution are known, the amplitude

of the tune spread (e.g. ξbb, the peak tune shift from the

beam-beam interaction) can be recovered by fitting the BTF

against the analytic equation for the BTF with the amplitude

of the nonlinearity as a fit parameter.

In case the ωi and ψ are not known we can still iden-

tify a property in Eq. 3 that allows to recover the tune

spread (the width interval of particle betatron frequencies):

In the calculation of the BTF, the imaginary part arises

from the pole in the integration when the denominator in

the fraction becomes zero. Whenever there are no Jx , Jy
such that Ω − ωi (Jx , Jy ) = 0, the integral has a real solu-
tion and Im(Ri )(Ω) = 0. This lets us conclude that wher-
ever Im(Ri )(Ω) � 0, there are particles with ωi = Ω and

therefore the tune density is nonzero. The observation that

Im(Ri (Ω)) = 0 does not imply that no particles oscillate at
Ω: It can be that the contributions of different Jx , Jy cancel
or dψ/dJi is zero.

Application to an Electron Lens
In the case of an electron lensωi is defined by the electron

gun system. For the electron lens in operation at RHIC since

2014 [1], ωi will be approximately due to a Gaussian charge

distribution to match the ion beam shape. For this case we

can calculate the BTF by solving the integral numerically.

An equation for tune shift caused by a circular Gaussian

charge distribution for space charge in these coordinates was

given by Burov and Lebedev [4]. We use it as follows:

ωx (Jx , Jy ) = ω0,x+ξbb

∫ 1

0

(
I0( Jx z

2
) − I1( Jx z

2
)
)

I0( Jy z
2

)

exp
(
z(Jx + Jy )/2

) dz

(4)

The BTF with ωi = ωx for a matched electron beam in

Eq. 3 is shown in Fig. 1. For this transverse nonlinearity the

tune density ψ(ω) is not proportional to Im(R)(ω) anymore.
Additionally in contrast to the strong requirement Im(R) � 0
we chose the weaker requirement |Im(R) | < t · |R|. We do

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-THPRO060

05 Beam Dynamics and Electromagnetic Fields
D02 Non-linear Dynamics - Resonances, Tracking, Higher Order

THPRO060
3011

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Analytic BTF R and on-axis tune density ψ for

incoherent tune shift due to a Gaussian matched electron

lens acting on a proton beam. The area shaded in green is

where the condition in the plot is fulfilled. At maximum tune

shift (Q −Q0)/ξ = 1 particles have nearly zero amplitude
leading to a negligible Im(R) in Eq. 3

so because our numeric solution of Eq. 3 was calculated

with an accuracy of 1% which is why we chose a threshold

t = 0.01. A similar condition has to be chosen in measured

or simulated BTF where noise leads to a non-zero Im(R).

SIMULATION

We used simulations to assess how applicable the condi-

tion |Im(R) | < t · |R| is in measurements for detection of tune
spread. The objectives of the simulations are to adress two

questions: How does the BTF change compared to the ana-

lytic coasting beam picture without coherent modes when

there is slow synchrotron motion and/or coherent modes

from beam-beam interactions? Furthermore how can the

beam-beam effect be used as a stand-in for the electron lens

while they are not yet available? The simulation is imple-

mented as a particle-in-cell (PIC) code based on Patric [5].

The simulation uses a two-dimensional Poisson solver for

the beam-beam interaction and analytic equations for the

fields of the round Gaussian matched electron lens. The

machine is approximated by a one-turn map.

Electron Lens

A first validation of simulation against analytic results

was carried out using a Gaussian beam interacting with a

matched electron lens and comparison with analytic results.

A sample is shown in Fig. 2. For RHIC-typical high-energy

proton operation conditions the introduction of synchrotron

motion did not significantly change the BTF compared to

the analytic result for coasting beams.

Figure 2: The BTF from PIC simulation (dots) agrees with

the analytically calculated one (solid line) for an ion beam

with a hole in action-angle phase space interacting with an

electron lens. To make the effect of the derivative in Eq. 3

more apparent we punched a hole into the Gaussian beam by

setting the particle density to zero for 3 < Jx + 0.6 · Jy < 5

for illustration. The peaks in the BTF correspond to the high

derivative of ψ at the edges of the hole.

Beam-beam
We investigated the applicability of a beam-beam interac-

tion as a stand-in for an electron lens. This was necessary in

order to produce electron-lens-like BTFs to test the theory

before the commissioning of the RHIC electron lens in 2014.

Beam-beam differs from the electron lens in that it produces

the well-known coherent π and σ modes with two beams

nearly on the same working point [6] .

Beam-beam without coherent modes To find condi-

tions where coherent modes are absent for testing our ana-

lytic theory on measurement data we followed Alexahin [7].

He mentions two methods of moving coherent modes into

the incoherent spectrum and subsequently Landau-damping

them: Firstly intensity splitting, having beams of an intensity

difference of a factor of at least about 2 will move the πmode
into the incoherent spectrum. Secondly tune splitting: Intro-

ducing a sufficiently large difference in tune between the two

beams will move both modes into the incoherent spectrum.

Simulation showed that for an intensity ratio of 1:10 and

tune splitting the simulated BTF with beam-beam were in

agreement with those of an electron lens. Furthermore intro-

duction of synchrotron motion at RHIC-typical frequencies

for high-energy proton operation (where the electron lens is

applied) did not significantly change the BTF in comparison

to the coasting-beam theory.

Threshold method on beam-beam with coherent
modes One can argue that even in the presence of coherent

modes, wherever the beam provides Landau damping the

imaginary part of the BTF should be non-zero. So apart

from the coherent modes at which we can expect a non-zero

imaginary part of the BTF, our threshold method should still

show areas where tune spread provides Landau damping.

Simulated BTFs with two beams of same intensity and tune

show that this assumption holds true. The picture can be-

come more complicated when Landau damping from the
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(a) BTF and tune density (b) Threshold dependency of the method.

Figure 3: Example of the threshold method used on BTF of beams with identical tunes and intensities. Part (a) shows the

BTF R and tune density together with the area where |Im(R) | < t · |R| with t = 0.11. part (b) shows how the recovered area

changes as a function of t. We see that the tune spread can be recovered from the threshold method.

other plane gets coupled into the plane of the BTF. A BTF

with coherent beam-beam modes and both beams on identi-

cal tunes is shown in Fig. 3. After neglecting the coherent π
and σ modes of the beam-beam interaction one is left with

the tune spread from the beam-beam interaction, which gives

an indication that the threshold method is still applicable

in the presence of coherent beam-beam when taking into

account the positions of the coherent modes.

MEASUREMENT
In measurements in 2012 and 2013 we used proton beams

with split tunes and split intensities to have BTF like those of

an electron lens as discussed above. We recovered the tune

spread and the beam-beam parameter using the threshold

method described above and fitting against the analytic BTF

calculated for a matched Gaussian lens. The results of the

Figure 4: Measured BTF in the horizontal plane for a weak

beam in a weak-strong beam-beam interaction. Fit against

Eq. 3 is shown, the shaded area is where |Im(R) | < 0.3 · |R|.

fit and threshold method were in agreement with each other

and with the expectation from beam profile and current mea-

surements in the horizontal plane, see Fig. 4. In the other

plane bumps of unknown origin were observed in the BTF

indicating that other damping processes might be at work.

Still the fit and the threshold method were in agreement and

indicated a tune spread about twice as high as expected from

beam-beam alone.

We conclude that in absence of coherent modes our

method allows recovery of tune spread from BTF for coast-

ing beams and bunched beams of low synchrotron frequency.

In favourable conditions, recovery may still be possible in

presence of coherent modes but needs further investigation.

The threshold method will detect any sources of damping so

tune spread recovery requires Landau damping to be domi-

nant.
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