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Abstract
The numerical noise inherent to particle-in-cell simula-

tion of 3D high intensity bunched beams is studied with
the TRACEWIN code and compared with the analytical
model by Struckmeier [1]. The latter assumes the six-
dimensional rms emittance or rms entropy growth can be
related to Markov type stochastic processes due to temper-
ature anisotropy and the artificial "collisions" caused by us-
ing macro-particles and calculating the space charge effect.
Our entropy growth confirms the dependency on bunch tem-
perature anisotropy as predicted by Struckmeier. However,
we also find noise generation by the non-Liouvillean effect
of the Poisson solver grid, which exists in periodic focusing
systems even when local temperature anisotropy is absent -
contrary to predictions by Struckmeier’s model.

INTRODUCTION
In modelling of high intensity beams by particle-in-cell

(PIC) computer simulation it is of importance to understand
the numerical noise generated by the discreteness of the spa-
tial Poisson solver grid and the finite number of particles.
We focus on beam parameters typical for high intensity lin-
ear accelerators, but our findings can also be extended to
circular accelerators with very different ratio of transverse
to longitudinal parameters.

Numerical noise can have a similar effect on the beam
as real collisions or intra-beam scattering. It is one of the
challenges of high intensity beam simulation to be able
to distinguish between physical and numerical growth ef-
fects. Towards this end an in-depth understanding and
parametrisation of numerical noise is crucial. Such colli-
sion or noise effects can, in principle, be associated with
entropy growth [2, 3]. The rms entropy model by Struck-
meier [4, 5] assumes that collisional behaviour and tem-
perature anisotropy are driving a 6d rms emittance growth,
which leads to the rms entropy growth. An observation of
such an emittance growth in a linac beam context using the
PICNIC space charge routine within the PARMILA code
was presented in Ref. [6].

RMS APPROACH TO ENTROPY GROWTH
Lawson et al. [2] first discussed a probability based ap-

proach to entropy by using the logarithm of the rms emit-
tance. For a time-independent Kapchinskij-Vladimirskij
distribution in 4d phase space they thus obtained the rela-
tion S = k ln ε , where k is the Boltzmann constant. An
important step ahead for dynamically evolving distributions
has been the approach by Struckmeier [4, 5] who demon-
strated that the rms envelope equations can be extended to

the full Vlasov-Fokker-Planck equation. The thus obtained
equation applies to the product of the three rms emittances,
which can be understood as a six-dimensional rms emit-
tance, ε6d ≡ ε x εy ε z , hence

1
k

dS
ds
=

d
ds

ln ε x (s)εy (s)ε z (s) =
k f

3
IA =

k f

3
�
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+

(1 − rxz )2

rxz
+

(1 − ryz )2

ryz
�
�
≥ 0 (1)

where s = βct measures the distance and k f ≡ β f /βcγ
with β f the dynamical friction coefficient. The rnm are rms
based "temperature ratios" or ratios of intrinsic spreads of
velocities given here in non-relativistic approximation:

rxy (s) ≡ Ty (s)
Tx (s)

, rxz (s) ≡ Tz (s)
Tx (s)

, ryz (s) ≡ Tz (s)
Ty (s)

, (2)

For upright ellipses we simply have the familiar rms expres-
sions

Ty (s)
Tx (s)

≡
ε2y/
〈
y2
〉

ε2x/
〈
x2〉 =

εy ky
ε x kx

(3)

and similar for the remaining ratios. Some caution is nec-
essary when using a concept like "temperature". Strictly
speaking, it cannot be defined properly for our beams,
which are not in an equilibrium state. In this model the
concept of locally near-isotropic temperatures is formally
adopted as basis for the validity of the Einstein relation con-
necting isotropic diffusion and friction coefficients.

Eq. 1 suggests a separation of a "friction term" (given
by k f ) and a "temperature anisotropy term" IA defined by
the bracket on the r.h.s. of Eq. 1. Details of the numerical
scheme and of the Coulomb logarithm are assumed to enter
into k f , which is separated from the "driving" anisotropy
term. No growth of the rms emittance is predicted from
Eq. 1, if all temperatures are identical everywhere and the
r.h.s. vanishes.

In the remainder of this work growth of ε6d is thus used
as a synonym to entropy growth. It is, however, necessary
to apply some caution here. An entropy definition based on
rms quantities cannot be applied to collective or resonant
processes beyond second order, which may cause growth of
individual rms emittances, but at the same time a decrease
of ε6d and thus the rms entropy is not excluded.

3D BUNCHES IN PERIODIC SOLENOID
WITH r z POISSON SOLVER

The TRACEWIN code [7] is employed here with a
bunched beam and a periodic lattice with thin solenoid
lenses and thin rf gaps at the same location. Due to
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the rotational symmetry the r z Poisson solver option of
TRACEWIN/PICNIC is sufficient. It is characterized by
the number ncr of radial cells from the origin to Rmax ; and
ncz as radial cells from −Zmax to Zmax . For these max-
imum grid extent values we have assumed throughout the
values 3σ, where σ is the rms size in each direction. Be-
yond it PICNIC determines fields analytically assuming a
Gaussian density distribution of the same rms sizes. We as-
sume a length of 1 m per cell and a spherical bunch with
equal emittances in x, y, z and k0x,y,z = 60o . We set the op-
tion "steps of calculation" to 20/10 in TRACEWIN, which
implies 20 lattice calculations and 10 space charge steps per
meter of drift space, in addition to one lattice calculation
and one space charge step per solenoid. Due to a round-
ing up algorithm this amounts to 14 space charge steps per
lattice cell, which is found as sufficient. As starting distri-
bution we employ either the TRACEWIN standard option
"6d-ellipsoid" (randomly generated in the six-dimensional
phase space ellipsoid with parabolic density profiles) or the
option "Gaussian" (Parmila type 36).

Here we study the relative increase in ε6d over 1000 cells
for a strictly spherical bunch with Gaussian initial distribu-
tion function, ε x,y/ε z = 1, k0x,y,z = 60o and kx,y,z ≈ 33o .
The dependence on N is shown in Fig. 1, where the rel-
ative growth ΔS/k = Δε6d/ε6d is plotted against 1/N as
measure of the charge per macro particle (note the double-
logarithmic scale, with the dashed line is indicating an hy-
pothetical strictly linear extrapolation through the origin).
Throughout this study Δε6d is normalized to 1000 lattice
cells, which makes use of a practically linear evolution of
ε6d in s; except for relatively small values of N , where the
initial gradient of ε6d was determined and extrapolated to
the same value of 1000 cells.

In spite of the absence of anisotropy, hence IA = 0, all
cases show a finite growth of ε6d , which is unexpected in
the frame of Eq. 1. We assume this growth is caused by a
violation of the assumption of a locally isotropic collision
type diffusion process - the underlying assumption in the
derivation of Eq. 1 - in our periodic focussing system. It
must be assumed that this violation is actually a combined
effect of: (1) Coulomb interaction taken via charges on a
relatively coarse grid rather than direct particle-particle in-
teraction; (2) a periodic modulation of focusing introducing
a "coherent" streaming against the grid, which is not slow
compared with "collision times". This subject is discussed
in further detail in Ref. [8].

We therefore introduce a purely grid-related noise term
IGN in Eq. 1, which is independent of the temperature
anisotropy term:

d
ds

ln ε x (s)εy (s)ε z (s) =
k
�

f

3
(IA + IGN ) . (4)

We have also introduced a k
�

f to take into account that these
grid related effects might also have an effect on k f , besides
the offset term IGN .

For the 16x16 grid a linear dependence of Δε/ε is noted
in the range from 1000 up to ≈20.000 particles:

Δε6d/ε6d ∝ N−1 (5)

For higher N we find that Δε/ε bends off, however. We
also show cases with grid resolution of only 12x12 and find
that the departure from a linear law occurs even with less
particles, and even more for 8x8 grids. The data indicate
that for sufficiently large N we enter into a grid resolution
limited region, where further increasing of N doesn’t help
much to reduce growth of ε6d , unless the grid resolution is
increased as well. This transition region is characterized by

Figure 1: Relative growth of ε6d for N from 1000 to
128.000 macro particles indicating transition to grid reso-
lution limited regions.

a typical average number of particles per cell. With the av-
erage number of particles per (toroidal) cell in ΔrΔz given
as N/(n2

c ∗ 3.14/4) we find that the transition occurs typi-
cally for 80-100 particles in a toroidal cell (for example for
16.000 particles for nc = 16). This suggests that for signifi-
cantly less particles statistical fluctuations of charges on the
grid become large, hence more particles will help to reduce
the noise effect. Using significantly more particles, instead,
has no further benefit unless the grid resolution is increased
as well.

TEMPERATURE ANISOTROPY DRIVEN
NOISE

Justification of the separation of k
� with the assumption

of a "kinetic" term IA+ IGN needs careful examination. We
assume k0xyz = 60o , N=4000, a 16x16 grid with the "6d-
ellipsoid" initial distribution. The linac current is chosen
again such that kxyz = 33o for equal emittances. Different
emittances in transverse and longitudinal directions are real-
ized in such a way that the product ε x εy ε z remains invari-
ant. The initial temperature anisotropy on the abscissa of
Fig. 2 is determined via Eq. 3 using actual emittances and
space charge dependent tunes k from TRACEWIN, while
Δε6d/ε6d is extracted from the gradients of ε6d taken over
the first 100 or few hundred cells.
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Figure 2: Relative growth of ε6d for k0xyz = 60o and vary-
ing (initial) temperature anisotropy.

The simulation results confirm the existence of a mini-
mum emittance growth of Δε6d/ε6d ≈ 0.03 at the point,
where the temperature ratios r in Eq. 2 are all equal to
unity. In order to check the applicability of the analytical
IA in Eq. 1 we need to fit k

�

f and IGN to the numerical
data using Eq. 4. The thus resulting "theoretical" curve in
Fig. 2 shows good agreement with the simulation data. We
have also tested this comparison for split k0xy and k0z to
60o/60o/47o and find reasonably good agreement as well.

3D BUNCHES WITH xyz POISSON
SOLVER IN FODO LATTICE

We adopt an "equivalent" periodic FODO lattice with rf
gaps and cell length again 1 m. The same phase advance per
m is chosen as in the previous examples as well as identical
emittances, which results in approximately the same space
charge depressed tunes. The alternating focusing causes a
stronger modulation and local imbalance of "temperatures",
which is described in Ref. [4] as source of entropy growth.
We expect that this mechanism amplifies or adds to the al-
ready mentioned "non-Markov" effects found for the peri-
odic solenoid. This is shown in Fig. 3 as function of nc
and for different N as well as space charge steps. Note that
the difference by decreasing the number of space charge
steps per cell from 15 (10/m in TRACEWIN) to 11 (3/m
in TRACEWIN) is minor. Both cases, low and high parti-
cle numbers, show that an optimum nc exists, which is the
higher the larger N . As before, large N is efficient only if
the grid resolution is sufficiently large.

Comparing with the periodic solenoid we find an en-
hanced noise level. The results of Fig. 3 also differ from the
result reported in Ref. [6], where low and high particle num-
ber (transverse) emittance growth is nearly identical around
nc = 8. For this grid resolution we find that 16.000 particles
lead to practically four times the growth in ε6d than 128.000
particles. Theoretically, following the result of Fig. 1 and
Eq. 5, the difference could be even as large as a factor eight.

Figure 3: Relative growth of ε6d in FODO for different N
as function of number of grid cells in x, y, z and different
numbers of space charge steps.

The needed high resolution may turn out impractical - in
particular jointly with large N .

CONCLUSION AND OUTLOOK
Our simulations are in a grid effect dominated regime,

which differs from the assumption of a collisional regime
assumed in the work by Struckmeier. Thus, we obtain en-
tropy growth even in fully isotropic cases with no tempera-
ture differences. Further work is needed to explore in more
detail the transition between two distinct regimes: the "grid
effect dominated regime" - claimed here - where particles in-
teract in a non-Liouvillean way with the charge distribution
on a grid; and a "particle collision regime", where (Markov
type) particle-particle collisions are resolved. The latter can
be assumed to be increasingly relevant at much higher grid
resolution than employed here.

Acknowledgment: The authors are grateful for valuable
discussions with J. Struckmeier.
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