Author: Roncarolo, F.
Paper Title Page
MOPME075 Laser Based Stripping System for Measurement of the Transverse Emittance of H Beams at the CERN LINAC4 652
  • T. Hofmann, E. Bravin, U. Raich, F. Roncarolo
    CERN, Geneva, Switzerland
  • B. Cheymol
    ESS, Lund, Sweden
  Funding: LA3NET is funded by the European Commission under Grant Agreement Number GA-ITN-2011-289191
The new LINAC4 at CERN will accelerate H particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material intercepting the H beam allows the measurement of a full power H beam. This paper will focus on the general design and integration of both the laser and H0 detector systems.
TUPFI026 Investigations of the LHC Emittance Blow-Up during the 2012 Proton Run 1394
  • M. Kuhn
    Uni HH, Hamburg, Germany
  • G. Arduini, P. Baudrenghien, J. Emery, A. Guerrero, W. Höfle, V. Kain, M. Lamont, T. Mastoridis, F. Roncarolo, M. Sapinski, M. Schaumann, R.J. Steinhagen, G. Trad, D. Valuch
    CERN, Geneva, Switzerland
  About 30 % of the potential luminosity performance is lost through the different phases of the LHC cycle, mainly due to transverse emittance blow-up. Measuring the emittance growth is a difficult task with high intensity beams and changing energies. Improvements of the LHC transverse profile instrumentation helped to study various effects. A breakdown of the growth through the different phases of the LHC cycle is given as well as a comparison with the data from the LHC experiments for transverse beam size. In 2012 a number of possible sources and remedies have been studied. Among these are intra beam scattering, 50 Hz noise and the effect of the transverse damper gain. The results of the investigations are summarized in this paper. Requirements for transverse profile instrumentation for post LHC long shutdown operation to finally tackle the emittance growth are given as well.  
TUPFI062 Operational Results of the LHC Luminosity Monitors until LS1 1490
  • A. Ratti, S.C. Hedges, J. Jones, H.S. Matis, M. Placidi, W.C. Turner, V.K. Vytla
    LBNL, Berkeley, California, USA
  • E. Bravin, F. Roncarolo
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
  Funding: Work funded by the US Department of Energy through the US- LARP program.
The monitors for the high luminosity regions in the LHC have been operating since 2009 to optimize the LHC's luminosity. The devices are gas ionization chambers inside the neutral particle absorber 140 m from the interaction point and monitor showers produced by high energy neutral particles from the collisions. They have the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. The devices have operated on a broad range of luminosity, from the initial 1028 until the levels well beyond 1033 reached in 2012. We present operational results of the device during proton and lead ion operations until LS1, which include runs at 40 MHz bunch rate and with p-Pb collisions.
TUPFI063 Electromagnetic Coupling between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System 1493
  • F. Roncarolo, W. Andreazza, A. Bertarelli, E. Bravin, F. Caspers, M. Garlaschè, A. Goldblatt, J-J. Gras, O.R. Jones, T. Lefèvre, E. Métral, A.A. Nosych, B. Salvant, G. Trad, R. Veness, C. Vollinger, M. Wendt
    CERN, Geneva, Switzerland
  The CERN LHC is equipped with two Synchrotron Radiation Monitor systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.  
TUPME032 Update on Beam Induced RF Heating in the LHC 1646
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, W. Bartmann, P. Baudrenghien, O.E. Berrig, A. Bertarelli, C. Bracco, E. Bravin, G. Bregliozzi, R. Bruce, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, M. Deile, J.F. Esteban Müller, P. Fassnacht, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, S. Jakobsen, O.R. Jones, O. Kononenko, G. Lanza, L. Lari, T. Mastoridis, V. Mertens, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, R. Schmidt, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • H.A. Day
    UMAN, Manchester, United Kingdom
  • L. Lari
    IFIC, Valencia, Spain
  Since June 2011, the rapid increase of the luminosity performance of the LHC has come at the expense of increased temperature and pressure readings on specific near-beam LHC equipment. In some cases, this beam induced heating has caused delays whilie equipment cools down, beam dumps and even degradation of these devices. This contribution gathers the observations of beam induced heating attributable to beam coupling impedance, their current level of understanding and possible actions that are planned to be implemented during the long shutdown in 2013-2014.  
TUPME060 Tune Studies with Beam-Beam Effects in LHC 1703
  • S. Paret, J. Qiang
    LBNL, Berkeley, California, USA
  • R. Alemany-Fernandez, X. Buffat, R. Calaga, K. Cornelis, M. Fitterer, R. Giachino, W. Herr, A. Macpherson, G. Papotti, T. Pieloni, S. Redaelli, F. Roncarolo, M. Schaumann, R. Suykerbuyk, G. Trad
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
  Funding: This work was partially supported by the U.S. LARP and the NERSC of the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
In high brightness colliders, the tune spread due to the collisions has a significant impact on the quality of the beams. The impact of the working point on emittance growth and beam lifetime has been observed in beam experiments in LHC. Strong-strong beam-beam simulations that were accomplished to better understand such observations are shown. Compared to experiments, wide ranged parameter scans can be done easily. Tune footprints and scans of the emittance growth obtained from simulations are discussed. Three cases are considered: Very high intensity, moderate intensity and collisions with separated beams.
WEPEA046 Experimental Observations from the LHC Dynamic Aperture Machine Development Study in 2012 2606
  • M. Giovannozzi, S. Cettour Cave, R. De Maria, M. Ludwig, A. Macpherson, S. Redaelli, F. Roncarolo, M. Solfaroli Camillocci, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
  In view of improving the understanding of the behaviour of the dynamic aperture and to benchmark the numerical simulations performed so far, two experimental sessions have been scheduled at the LHC. The observations of the first sessions have been reported elsewhere[1], while in this paper the latest observations in terms of beam currents, blm losses and beam sizes will be described. The octupolar spool pieces have been used to artificially reduce the dynamic aperture and then induced slow beam losses. Alternating signs have been used in order to probe different configurations. Finally, scans over the strength of the decapolar spool pieces have been performed too.
[1] M. Giovannozzi et al., “First Experimental Observations from the LHC Dynamic Aperture Experiment”, in proceedings of IPAC12, p. 1362
THPWO082 Commissioning of the Linac4 RFQ at the 3 MeV Test Stand 3951
  • C. Rossi, L. Arnaudon, G. Bellodi, J.C. Broere, O. Brunner, A.M. Lombardi, J. Marques Balula, P. Martinez Yanez, J. Noirjean, C. Pasquino, U. Raich, F. Roncarolo, M. Vretenar
    CERN, Geneva, Switzerland
  • M. Desmons, A. France, O. Piquet
    CEA/IRFU, Gif-sur-Yvette, France
  Linac4, the future 160MeV H injector to the CERN Proton Synchrotron Booster, is presently under construction at CERN as a first step of the planned upgrade of the LHC injectors. The low energy section of LINAC4, consisting of an ion source, a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a chopper line is being commissioned in a dedicated test stand before installation in its final position in the tunnel. The RFQ is designed to accelerate a 45 keV, 70 mA, H beam to 3 MeV, with an efficiency of 95% while preserving the transverse emittance. The RFQ, a four-vane structure 3 m in length, has been designed in collaboration with CEA/IRFU and it has been built at the CERN workshop. The precise fabrication has allowed to achieve a field flatness of 1%. The completion of the accelerating structure in September 2012 was followed by a complete series of bead-pull measurements and by high-power conditioning to the nominal power of 0.39 MW corresponding to a voltage of 78 kV across the 3 meters. Measurements with beam are foreseen during the first half of 2013. This paper reports the results of the low-power and high power RF commissioning as well as the status of beam measurements.