Author: Wang, G.
Paper Title Page
MOEPPB007 Studies of eRHIC Coherent Instabilities 91
 
  • G. Wang, M. Blaskiewicz
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the presence of an effective coherent electron cooling, the rms ion bunch length in eRHIC will be kept at 8.4cm, which is about a factor of 3 shorter than the current RHIC rms bunch length. Together with a factor of 2 increase in bunch intensity, coherent instabilities could be a potential limitation for achieving desired machine performance. In this study, we use the tracking code TRANFT to find thresholds and growth rates for various single bunch and coupled bunch instabilities with linear chromaticity and amplitude dependent tune shift taken into account. Based on the simulation results, requirements of machine parameters such as rf voltage, linear chromaticity, and octupole strength are specified to avoid these instabilities.
 
 
MOPPC025 RHIC Polarized Proton Operation in Run 12 184
 
  • V. Schoefer, L. A. Ahrens, A. Anders, E.C. Aschenauer, G. Atoian, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, R.L. Hulsart, A. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, F. Severino, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Successful RHIC operation with polarized protons requires meeting demanding and sometimes competing goals for maximizing both luminosity and beam polarization. In Run 12 we sought to fully integrate into operation the many systems that were newly commissioned in Run 11 as well as to enhance collider performance with incremental improvements throughout the acceleration cycle. For luminosity maximization special attention was paid to several possible source of emittance dilution along the injector chain, in particular to optical matching during transfer between accelerators. Possible sources of depolarization in the AGS and RHIC were also investigated including the effects of local coupling and low frequency (10 Hz) oscillations in the vertical equilibrium orbit during the RHIC ramp. The results of a fine storage energy scan made in an effort to improve store polarization lifetime are also reported in this note.  
 
MOPPC090 Coupling Modulator Simulations into an FEL Amplifier for Coherent Electron Cooling 346
 
  • I.V. Pogorelov, G.I. Bell, D.L. Bruhwiler, B.T. Schwartz, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US DOE Office of Science, Office of Nuclear Physics under grant numbers DE-FG02-08ER85182 and DE-SC0000835.
Next-generation ion colliders will require effective cooling of high-energy hadron beams. Coherent electron cooling (CeC) can in principle cool relativistic hadron beams on orders-of-magnitude shorter time scales than other techniques*. Particle-in-cell (PIC) simulations of a CeC modulator with the parallel VORPAL framework generate macro-particle distributions with subtle but important phase space correlations. To couple these macro-particles into a 3D simulation code for the free-electron laser (FEL) amplifier, while retaining all details of the 6D phase space coordinates, we implemented an alternative approach based on particle-clone pairs**. Our approach allows for self-consistent treatment of shot noise and spontaneous radiation, with no need for quiet-start initialization of the FEL macro-particles' ponderomotive phase. We present results of comparing fully 3D amplifier modeling based on the particle-clone approach vs GENESIS simulations where distribution of bunching parameter was used as input. We also discuss enabling direct coupling of the VORPAL delta-f simulation output into 3D distributions of particle-clone pairs.
* V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
** V.N. Litvinenko, "Macro-particle FEL model with self-consistent spontaneous radiation," unpublished (2002).
 
 
MOPPD016 Status of Proof-of-principle Experiment for Coherent Electron Cooling 400
 
  • I. Pinayev, S.A. Belomestnykh, I. Ben-Zvi, J. Bengtsson, A. Elizarov, A.V. Fedotov, D.M. Gassner, Y. Hao, D. Kayran, V. Litvinenko, G.J. Mahler, W. Meng, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, S.D. Webb, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, V.H. Ranjbar, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: US DOE Office of Science, DE-FC02-07ER41499, DE-FG02-08ER85182; NERSC DOE contract No. DE-AC02-05CH11231.
Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. To verify the concept we conduct proof-of-the-principle experiment at RHIC. In this paper, we describe the current experimental setup to be installed into 2 o’clock RHIC interaction regions. We present current design, status of equipment acquisition and estimates for the expected beam parameters.
 
 
TUPPP093 General Results on the Nature of FEL Amplification 1804
 
  • S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Free-electron lasers are increasingly important tools for the material and biological sciences, and although numerical and analytical theory is extensive, a fundamental question about the nature of the FEL growing modes has remained unanswered. In this proceeding, we present results of a topological nature concerning the number of amplifying solutions to the 1-dimensional FEL equations as related to the energy distribution of the electron bunches.  
 
WEPPR099 Shielding of a Hadron in a Finite e-Beam 3171
 
  • A. Elizarov, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The thorough study of coherent electron cooling, the modern cooling technique capable to deal with accelerators operating in the range of few TeVs*, rises many interesting questions. One of them is a shielding dynamics of a hadron in an electron beam. Now this effect is computed analytically in an infinite beam approximation**. Many effects are drastically different in finite and infinite plasmas. Here we propose a method to compute the dynamical shielding effect in a finite cylindrical plasma - the realistic model of an electron beam in accelerators.
* V. N. Litvinenko, Y. S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
** G. Wang, M. Blaskiewicz, Phys. Rev. E 78, 026413 (2008).
 
 
THYB02 Influence of Electron Beam Parameters on Coherent Electron Cooling 3213
 
  • G. Wang, Y. Hao
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • S.D. Webb
    Tech-X, Boulder, Colorado, USA
 
  Coherent electron cooling (CeC) is promising to revolutionize the cooling of high energy hadron beams. The intricate dynamics of the CeC depends both on the local density and energy distribution of the beam. This talk should present a rigorous analytical model of the 3D processes (including diffraction) in the modulator and the FEL and describe how the theory is applied to electron beams with inhomogeneous longitudinal density- and energy distributions in the process of CeC. The SPC would like you to describe the influence of electron beam energy and current variations along the bunch length.  
slides icon Slides THYB02 [0.878 MB]  
 
THEPPB002 High-Fidelity 3D Modulator Simulations of Coherent Electron Cooling Systems 3231
 
  • G.I. Bell, D.L. Bruhwiler, I.V. Pogorelov, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Nuclear Physics, grant numbers DE-SC0000835 and DE-FC02-07ER41499. Resources of NERSC were used under contract No. DE-AC02-05CH11231.
Next generation electron-hadron colliders will require effective cooling of high-energy, high-intensity hadron beams. Coherent electron cooling (CeC) can in principle cool relativistic hadron beams on orders-of-magnitude shorter time scales than other techniques*. The parallel VORPAL framework is used for 3D delta-f PIC simulations of anisotropic Debye shielding in a full longitudinal slice of the co-propagating electron beam, choosing parameters relevant to the proof-of-principle experiment under development at BNL. The transverse density conforms to an exponential Vlasov equilibrium for Gaussian velocities, with no longitudinal density variation. Comparison with 1D1V Vlasov/Poisson simulations shows good agreement in 1D. Parallel 3D simulations at NERSC show 3D effects for ions moving longitudinally and transversely. Simulation results are compared with the constant-density theory of Wang and Blaskiewicz**.
* V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
** Wang and Blaskiewicz, Phys Rev E 78, 026413 (2008).