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Abstract
Free-electron lasers (FELs) are increasingly important

tools for the material and biological sciences, and although
numerical and analytical theory is extensive, a fundamental
question about the nature of the FEL growing modes has re-
mained unanswered. In this proceeding, we present results
of a topological nature concerning the number of amplify-
ing solutions to the 1-dimensional FEL equations as related
to the energy distribution of the electron bunches.

INTRODUCTION
Free-electron lasers [1, 2] are a tunable, intense, trans-

versely coherent light source which can provide intense,
short pulses of photons into the hard X-ray regime [3].
The FEL process has been explored extensively both the-
oretically [4, 5, 6] and numerically [7, 8]. These treat-
ments generally regard an energy distribution in the elec-
tron bunch which is either monoenergetic (which leads to a
cubic equation for the growth rate) or some more elaborate
single-peaked distribution such as a Lorentzian or Gaussian
distribution. Real LINACs, such as the driver for the LCLS
FEL, yield much more complicated energy distributions.

Theoretical descriptions of the free-electron laser pro-
cess in one dimension lead to a single resonant wavelength
for a bunch with average energy γ0 given by

λr =
λw
2γ20

(
1 +

〈
a2w
〉)

(1)

where λw is the wiggler period and aw = eBw/kwmc is
the wiggler parameter. Resonant interaction between the
individual electron trajectories in the wiggler and the laser
field leads to exponential growth in the laser field envelope.
There is a single mode which is amplified by the FEL at the
resonant wavelength under the assumption of a beam with
a single energy peak. For the purposes of this discussion, a
“peak” refers to any point where the energy distribution is
a local maximum. In that context, the energy distribution
F has a vanishing derivative, viz.

dF

dE
= 0 (2)

where E = γmc2 is the total energy.
The growth rate of this mode is characterized by the FEL

dispersion relation
s = D̂(s) (3)
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Figure 1: Contour enclosing all the amplifying solutions of
a dispersion relation in Laplace space.

where space charge forces have been neglected and

D̂(s) =

∫
dP̂

dF̂

dP̂

1

s+ ı(∆̂ + P̂ )
(4)

is the dispersion integral. Here, F̂ is the normalized en-
ergy distribution, ∆̂ is the normalized detuning from res-
onance1, P̂ is the normalized deviation from some chosen
reference energy, and the sj that solve the dispersion rela-
tion appear in the linear solution for the fields

E(z) =
∑
j

Eje
sj ẑ (5)

For κ − N distributions, it is known that there are N + 2
solutions to the above dispersion relation [9], and thus, in
the limit of a Gaussian distribution, there are an infinite
number of roots.

Exact analytic expressions for the roots are impossible
outside of a monoenergetic or κ − 1 (Lorentzian) distribu-
tion. However, because some of these modes are amplify-
ing and others are not, it is useful to at least quantify how
many of these modes are growing, as these are the modes
of interest.

NYQUIST DIAGRAMS
Historically, it was found that for linear systems of cir-

cuits the region of stability was much larger than a crude

1Conventionally, the notation for this is Ĉ, but we opt for a different
notation to prevent confusion with the labeling for contours later.

TUPPP093 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

1804C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Synchrotron Light Sources and FELs

A06 Free Electron Lasers



analysis would have indicated. Herbert Nyquist explained
this by considering a contour in frequency space [10] and
determining its resulting winding number either analyti-
cally, numerically, or experimentally. The original work
was done in frequency space, but a Fourier transform can
be transformed into a Laplace transform by taking ω 7→ ıs,
and it is in Laplace space that we consider the FEL ampli-
fication process.

From the argument principle of complex analysis2, it
can be shown that the winding number of the above con-
tour when mapped by the dispersion relation is equal to the
number of zero minus the number of poles inside that con-
tour.

These Nyquist diagrams allow the measurement of re-
gions of stability, and have been used as a standard tool
in electrical engineering, as well as in the discussion of
instabilities in plasmas [12], and in analyzing various in-
stabilities and control systems in accelerators (for example
[13, 14, 15] among other instances).

FEL GROWING MODES
By using the method of Nyquist diagrams, consider the

above dispersion relation with a contour closed in the right
half-plane as in Fig. 1. The winding number of this con-
tour is equal to the number of zeros minus the number of
poles inside the contour. Thus, if the winding number and
number of poles inside the contour is known, the number
of modes with Re(s) > 0 is given by

Z = W + P (6)

This corresponds to the number of growing modes.
The details of this calculation are too lengthy for the

present proceeding, but can be found in [16]. The essen-
tial conclusion is that D(s) vanishes as |s| → ∞, and so
the winding number is dictated entirely by the behavior of
the contour of s = ıt for t = (∞,−∞), and how many
times this wraps around the origin.

As an example of this behavior, consider the energy dis-
tribution in Fig. 2 and the corresponding Nyquist diagram
in Fig. 3.

Because the detuning is merely a vertical shift of the con-
tour, the Nyquist diagram is universal for a given energy
distribution, and the total number of growing modes may
be calculated by simply observing the shape of the diagram
without concern for the specific detuning parameter.

The Nyquist diagram in Fig. 3, for example, predicts the
existence of two amplifying modes at zero detuning. Be-
cause the energy distribution was chosen to be a double-
Lorentzian distribution, the dispersion relation has a closed
polynomial form. The resulting solutions are shown in
Fig. 4 where, indeed, at zero detuning there are two grow-
ing modes.

In general, the points where the contour crosses the
imaginary axis are related to the zeros of the derivative
of the normalized energy distribution function, which is

2for example, see [11] for a rigorous discussion of this theorem.

Figure 2: Two peak energy distribution.

Figure 3: The Nyquist diagram at zero detuning predicts
two growing modes.

Figure 4: Solutions for the dispersion relation with an en-
ergy distribution in Figure 2.
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the number of peaks. Specifically, the contour crosses the
imaginary axis when

F̂ ′(∆̂− t) = 0 (7)

for a given detuning. Thus, in general, for an energy dis-
tribution with N local maxima in its energy distribution,
one expects at most N amplifying modes. Furthermore,
for N = 1, an exact form for the short wavelength cutoff is
found to be

∆̂∗ = −
∫
dP̂

dF̂

dP̂

1

P̂
(8)

and this scales as ∆̂∗ ∼ σ−2, where σ is the normalized
energy spread.

DISCUSSION
The resonant wavelength at which a single electron ra-

diates depends upon the single electron’s energy. In order
to “communicate” with other electrons and, therefore, en-
ter the high gain regime, a large number of electrons must
have close to the same energy and be physically close to
each other in space. Narrow peaks in the local energy dis-
tribution, as those described above, lead to collections of
electrons lasing at a similar resonant wavelength. Thus, if
there is some local energy distribution within the electron
bunch that leads to multiple collections of electrons all ra-
diating within the bandwidth of a single group, but outside
the bandwidth of the other groups, then each group with ra-
diate more or less independently of each other. This is the
physical origin of the multiple growing modes.

As the energy peaks begin to get close enough together
that the electrons can cross-communicate, some construc-
tive interference can begin to form, until the peaks to-
tally overlap and the solutions become degenerate. Thus,
if the two-Lorentzian distribution in Fig. 2 were to have
their peaks merge closer and closer, eventually the resulting
growth would reduce to the problem of a single Lorentzian
distribution.
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