Author: Schoessow, P.
Paper Title Page
MOPPP012 Experimental Observation of Energy Modulation in Electron Beams Passing through Terahertz Dielectric Wakefield Structures 595
 
  • S.P. Antipov, C.-J. Jing, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.G. Fedurin, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • W. Gai, A. Zholents
    ANL, Argonne, USA
  • B.C. Jiang
    SINAP, Shanghai, People's Republic of China
 
  Funding: DOE SBIR.
We report observation of a strong wakefield induced energy modulation in an energy-chirped electron bunch passing through a terahertz dielectric-lined waveguide. This modulation can be effectively converted into a spatial modulation by means of a chicane, forming micro-bunches (density modulation) with a periodicity of 0.5 - 1 picosecond, hence capable of driving coherent THz radiation. The experimental results agree well with theoretical predictions.
 
 
MOPPP013 Passive Momentum Spread Compensation by a “Wakefield Silencer” 598
 
  • S.P. Antipov, C.-J. Jing, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.G. Fedurin, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • W. Gai, A. Zholents
    ANL, Argonne, USA
 
  Funding: DOE SBIR.
We report an observation of de-chirping of a linearly chirped (in energy) electron bunch by its passage through a 5 cm long dielectric loaded waveguide structure. The experiment was conducted at the ATF facility at BNL according to a concept dubbed a wakefield silencer originally developed at the ANL AATF*, which involves defining the electron bunch peak current distribution and selecting the optimal waveguide structure suitable for chirp cancellation using self-induced wakefields of the electron bunch. Our experiment has been carried out with a 247 micron triangular beam with a 200 keV energy spread, which was reduced by a factor of three to approximately 70 keV by passing it through a 0.95 THz dielectric-lined structure. Theoretical analysis supports the experimental results. Further exploration and applications of this technique will be discussed as well.
* M. Rosing, J. Simpson, Argonne Wakefield Accelerator Note, WF -144 (1990).
 
 
TUPPR048 Short RF Pulse Linear Collider 1924
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Funding: DOE SBIR program under Contractor #DE-SC0004320
In general, a high gradient is desirable for future linear collider designs because it can reduce the total linac length. More importantly, the efficiency and the cost to sustain the high gradient should also be considered in the optimization process of an overall design. In this article, we explore a parametric territory of short rf pulse, high group velocity, high frequency, and high gradient, etc., that may lead to an affordable high energy linear collider in the future.
 
 
TUPPR049 An X-band Standing Wave Dielectric Loaded Accelerating Structure 1927
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S.H. Gold
    NRL, Washington, DC, USA
  • S. Kazakov
    Fermilab, Batavia, USA
  • R. Konecny
    ANL, Argonne, USA
 
  Funding: DOE SBIR Phase I grant #DE-SC0006303
An 11.4 GHz standing wave dielectric loaded accelerating structure was recently developed. We expect to achieve a 120 MV/m gradient powered by a 10 MW 200 ns rf pulse from the X-band Magnicon at the Naval Research Laboratory. The structure uses on-axis rf coupling, which helps to localize the maximum EM fields within the dielectric region. Bench testing shows excellent agreement with the simulation results. The high power rf test is scheduled for January 2012.
 
 
WEPPP042 Experimental Demonstration of Wakefield Effects in a 250 GHz Planar Diamond Accelerating Structure 2816
 
  • S.P. Antipov, J.E. Butler, C.-J. Jing, A. Kanareykin, P. Schoessow, S.S. Zuo
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.G. Fedurin, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • W. Gai
    ANL, Argonne, USA
 
  Funding: DOE SBIR
We have directly measured the mm-wave wake fields induced by subpicosecond, intense relativistic electron bunches in a diamond loaded accelerating structure via the dielectric wake-field acceleration mechanism. Fields produced by a first, drive, beam were used to accelerate a second, witness, electron bunch which followed the driving bunch at an adjustable distance. The energy gain of the witness bunch as a function of its separation from the drive bunch is a direct measurement of the wake potential. We also present wakefield mapping results for THz quartz structures. In this case decelerating wake inside the bunch is inferred from the drive beam energy modulation.
 
 
WEPPP045 Beam-breakup Analysis for an Annular Cherenkov High Gradient Wakefield Accelerator 2822
 
  • A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • A. Altmark
    LETI, Saint-Petersburg, Russia
 
  Funding: This work is supported by the SBIR Program of the US Department of Energy.
A complete analytical solution for Cherenkov wakefields generated by an azimuthally asymmetric annular beam propagating in a coaxial two-channel dielectric structure is presented. The transformer ratio of the annular beam Cherenkov wakefield accelerator initially proposed by R. Keinigs, M. Jones* is dramatically increased in comparison to a collinear cylindrical wakefield accelerating structure. A particle-Green's function beam dynamics code BBU-3000** to study beam breakup effects has been upgraded to incorporate annular drive beams and coaxial dielectric wakefield accelerating structures*. Beam dynamics simulations of the annular drive beam with asymmetric charge distributions have been carried out to determine the sensitivity of this method to beam imperfections in GHz and THz frequency ranges.
*R. Keinigs, M. Jones, Proc. 7th Int. Conf. High-Power Part. Beams, Beams’88, Karlsruhe, Germany, 864 (1988).
**P. Schoessow et al., AIP Conference Proceedings 1299, 262 (2010).
 
 
WEPPP046 Nonlinear Dielectric Wakefield Experiment for FACET 2825
 
  • P. Schoessow, S.P. Antipov, C.-J. Jing, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S. Baturin
    LETI, Saint-Petersburg, Russia
 
  Funding: Work supported by the SBIR Program, US Dept. of Energy.
Recent advances in ferroelectric ceramics have resulted in new possibilities for nonlinear devices for particle accelerator and rf applications. The new FACET (Facility for Advanced Accelerator Experimental Tests) at SLAC provides an opportunity to use the GV/m fields from its intense short pulse electron beams to perform experiments using the nonlinear properties of ferroelectrics. Simulations of Cherenkov radiation in the THz planar and cylindrical nonlinear structures to be used in FACET experiments will be presented. Signatures of nonlinearity are clearly present in the simulations: superlinear scaling of field strength with beam intensity, frequency upshift, and development of higher frequency spectral components.
 
 
WEPPP041 Wakefield Breakdown Test of a Diamond-loaded Accelerating Structure at the AWA 2813
 
  • S.P. Antipov, J.E. Butler, C.-J. Jing, A. Kanareykin, P. Schoessow, S.S. Zuo
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S. Baryshev, M.E. Conde, D.S. Doran, W. Gai, R. Konecny, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
 
  Funding: DOE SBIR
Diamond has been proposed as a dielectric material for dielectric loaded accelerating (DLA) structures. It has a very low microwave loss tangent, the highest available thermoconductive coefficient and high RF breakdown field. In this paper we report results from a wakefield breakdown test of diamond-loaded rectangular accelerating structure. The high charge beam from the AWA linac (~70 nC, σz = 2.5mm) will be passed through a rectangular diamond - loaded resonator and induce an intense wakefield. A groove is cut on the diamond to enhance the field. Electric fields up to 0.5 GV/m will be present on the diamond surface to attempt to initiate breakdown. A surface analysis of the diamond is be performed before and after the beam test.
 
 
THPPC074 High Frequency High Power RF Generation using a Relativistic Electron Beam 3458
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • H. Chen, Y. Yang
    TUB, Beijing, People's Republic of China
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, USA
 
  High frequency, high power rf sources are required for many applications. Benefiting from the ~10 GW beam power provided by the high current linac at the Argonne Wakefield Accelerator facility, we propose to develop a series of high power rf sources based on the extraction of coherent Cherenkov radiation from the relativistic electron beam. The frequencies cover from C-band up to W-band with different structures. Simulations show that ~1 GW 20 ns rf pulse can be generated for an 11.7 GHz structure, ~400 MW for a 26 GHz structure, and ~14 MW for a 91 GHz structure.