Author: Ptitsyn, V.
Paper Title Page
MOPPC021 Explore the Possibility of Accelerating Polarized He-3 Beam in RHIC 172
 
  • M. Bai, E.D. Courant, W. Fischer, V. Ptitsyn, T. Roser
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As the world’s first high energy polarized proton collider, RHIC has made significant progress in measuring the proton spin structure in the past decade. In order to have better understanding of the contribution of up and down quarks to the proton spin structure, collisions of high energy polarized neutron beams are required. In this paper, we present studies of accelerating polarized Helium-3 in RHIC with the current dual snake configuration. The possibilities of adding two more pairs of snakes for accelerating polarized He-3 were explored. Results of a six snake configuration in RHIC are also reported in the paper.
 
 
MOPPC025 RHIC Polarized Proton Operation in Run 12 184
 
  • V. Schoefer, L. A. Ahrens, A. Anders, E.C. Aschenauer, G. Atoian, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, R.L. Hulsart, A. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, F. Severino, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Successful RHIC operation with polarized protons requires meeting demanding and sometimes competing goals for maximizing both luminosity and beam polarization. In Run 12 we sought to fully integrate into operation the many systems that were newly commissioned in Run 11 as well as to enhance collider performance with incremental improvements throughout the acceleration cycle. For luminosity maximization special attention was paid to several possible source of emittance dilution along the injector chain, in particular to optical matching during transfer between accelerators. Possible sources of depolarization in the AGS and RHIC were also investigated including the effects of local coupling and low frequency (10 Hz) oscillations in the vertical equilibrium orbit during the RHIC ramp. The results of a fine storage energy scan made in an effort to improve store polarization lifetime are also reported in this note.  
 
MOPPD070 A SVD-based Orbit Steering Algorithm for RHIC Injection 523
 
  • C. Liu, A. Marusic, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The RHIC physics programs involve experiments with polarized proton and several species of ion beams. In the past, when switching between physics programs, first turn and circulating beam in RHIC was established manually by adjustments to the corrector dipoles for minimum beam loss. In this report, we introduce a new steering scheme based on an SVD algorithm which uses a single-pass orbit response matrix for first turn steering. The new scheme was implemented into the controls system and demonstrated successfully in Run-11. Establishing circulating beam using this automated approach has been shown to dramatically reduce the beam setup time.
 
 
MOPPD071 Error Localization in RHIC by Fitting Difference Orbit 526
 
  • C. Liu, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Many errors in an accelerator are evidenced as transverse kicks to the beam, which distort the beam trajectory. Therefore, the information of the errors are imprinted in the distorted orbits, which are different from what would be predicted by the optics model. In this paper, we introduce an algorithm for fitting the orbit based on an on-line optics model. We apply the algorithm to localize the location of the elusive source of vertical diurnal variations observed in RHIC, and analyze D0/Dx errors in local coupling measurement.
 
 
TUYA02 Overview of Asymmetric Electron Hadron Colliders 1025
 
  • V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  The first lepton-proton collider HERA at DESY completed its operation in 2007. Presently, several accelerator proposals for future electron-hadron colliders are under consideration in several laboratories from all over the world. The future accelerators intend to exceed the HERA luminosity by 2-3 orders of magnitude, as well as to cover the different ranges of center-of-mass collision energies. The research capabilities will be extended by including the collisions of electrons with heavy ions, as well as, in some designs, with polarized protons and polarized ions. The future electron-hadron colliders would serve as high-resolution microscopes able to reveal unprecedented details of the structure of nucleons and ions, including their spin content and the state of high gluon density matter. The colliders will provide us with ultimate tools to test both the ways Quantum Chromodynamics works as well as to look for new physics beyond the Standard Model. All proposed electron-hadron colliders are based on the extension of existing accelerators to accommodate the electron-hadron collisions. Advanced accelerator technologies are utilized in order to achieve the desired high luminosity.  
slides icon Slides TUYA02 [6.002 MB]  
 
TUPPR083 Kink Instability Suppression with Stochastic Cooling Pickup and Kicker 2017
 
  • Y. Hao, M. Blaskiewicz, V. Litvinenko, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The kink instability is one of the major beam dynamics issues of the linac-ring based electron ion collider. This head-tail type instability arises from the oscillation of the electron beam inside the opposing ion beam. It must be suppressed to achieve the desired luminosity. There are various ways to suppress the instability, such as tuning the chromaticity in the ion ring or by a dedicated feedback system of the electron beam position at IP, etc. However, each method has its own limitation. In this paper, we will discuss an alternative opportunity of suppressing the kink instability of the proposed eRHIC at BNL using the existing pickup-kicker system of the stochastic cooling system in RHIC.
 
 
WEPPP084 Weighted SVD Algorithm for Close-Orbit Correction and 10 Hz Feedback in RHIC 2906
 
  • C. Liu, R.L. Hulsart, A. Marusic, R.J. Michnoff, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Measurements of the beam position along an accelerator are typically treated equally using standard SVD-based orbit correction algorithms so distributing the residual errors, modulo the local beta function, equally at the measurement locations. However, sometimes a more stable orbit at select locations is desirable. In this paper, we introduce an algorithm for weighting the beam position measurements to achieve a more stable local orbit. The results of its application to close-orbit correction and 10-Hz orbit feedback will be shown and analyzed.
 
 
WEPPR017 Wake Fields Effects for the eRHIC Project 2976
 
  • A.V. Fedotov, S.A. Belomestnykh, D. Kayran, V. Litvinenko, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
An Energy Recovery Linac (ERL) with a high peak electron bunch current is proposed for the Electron-Ion collider (eRHIC) project at the Brookhaven National Laboratory. The present design is based on the multi-pass electron beam transport in existing tunnel of the Relativistic Heavy Ion Collider (RHIC). As a result of a high peak current and a very long beam transport, consideration of various collective beam dynamics effects becomes important. Here we summarize effects of the coherent synchrotron radiation, resistive wall, accelerating cavities and wall roughness on the resulting energy spread and energy loss for several scenarios of the eRHIC project, including results for different electron distributions. A possible correction scheme of accumulated correlated energy spread is also presented.
 
 
WEPPC109 Superconducting RF Systems for eRHIC 2474
 
  • S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, H. Hahn, D. Kayran, G.J. Mahler, G.T. McIntyre, C. Pai, I. Pinayev, V. Ptitsyn, J. Skaritka, R. Than, J.E. Tuozzolo, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, V. Litvinenko, T. Xin
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Future electron-hadron collider eRHIC will consist of a six-pass 30-GeV electron ERL and one of RHIC storage rings operating with energy up to 250 GeV. The collider design extensively utilizes superconducting RF (SRF) technology in both electron and hadron parts. This paper describes various SRF systems, their requirements and parameters.
 
 
THPPP026 Experimental Effects of Orbit on Polarization Loss in RHIC 3788
 
  • V.H. Ranjbar
    Tech-X, Boulder, Colorado, USA
  • M. Bai, H. Huang, A. Marusic, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We are performing several experiments during the RHIC ramp to better understand the impact of orbit errors on the polarization at our current working point. These will be conducted by exciting specified orbit harmonics during the final two large intrinsic resonance crossing in RHIC during the 250 GeV polarized proton ramp. The resultant polarization response will then be measured.