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Abstract 
The first lepton-proton collider HERA at DESY 

completed its operation in 2007. Presently, several 
accelerator proposals for future electron-hadron colliders 
are under consideration in several laboratories from all 
over the world. The future accelerators intend to exceed 
the HERA luminosity by 2-3 orders of magnitude, as well 
as to cover the different ranges of center-of-mass collision 
energies. The research capabilities will be extended by 
including the collisions of electrons with heavy ions, as 
well as, in some designs, with polarized protons and 
polarized ions. The future electron-hadron colliders would 
serve as high-resolution femtoscopes able to reveal 
unprecedented details of the structure of nucleons and 
ions, including their spin content and the state of high 
gluon density matter. The colliders will provide us with 
ultimate tools to test both the ways Quantum 
Chromodynamics works as well as to look for new 
physics beyond the Standard Model. All proposed 
electron-hadron colliders are based on the extension of 
existing accelerators to accommodate the electron-hadron 
collisions. Advanced accelerator technologies are utilized 
in order to achieve the desired high luminosity.   

INTRODUCTION 
The lepton-nucleon scattering has been a crucial tool of 

the scientific exploration for many years. The Deep 
Inelastic Scattering (DIS) experiments led to rise up of the 
quark-parton description of the nucleon structure and, 
ultimately, to the appearance of Quantum 
Chromodynamics (QCD) theory.  Later experiments used 
the beam of the muons, electrons and neutrinos scattered 
on fixed targets to look at the details of the internal 
structure of the protons and neutrons, including their spin 
structure. The lepton-proton HERA collider in DESY 
(Germany), which operated from 1991 to 2007, brought 
the DIS experiments to the region of very high center-
mass energy (CME) and produced remarkable physics 
output on the fine details of the proton structure, the 
discovery of very high density of sea quarks and gluons 
present in the proton, the detailed data on electro-weak 
electron-quark interactions and the precise measurement 
of strong interaction coupling constant [1].  In the present 
time there are several designs of future electron-hadron 
colliders under consideration in USA and Europe. 
Employing advanced accelerator technologies those future 
accelerators hope to exceed the luminosity of HERA 
collider by 2-3 orders of magnitude. In addition, the future 
electron-hadron colliders will provide the new exploration 
capabilities by involving electron collisions with heavy 
ions as well as with polarized protons and polarized light 
ions. Also new colliders will operate in different from 

HERA the center-of-mass energy (CME) regions. Table 1 
lists the designed colliders together with their CMEs. All 
designs can be separated in two groups (Ring-Ring and 
Linac-Ring), according to which acceleration technique is 
used for the electron beam acceleration (circular 
accelerator or linac).  The Linac-Ring designs utilize the 
energy recovery linacs in order to produce the high 
luminosity in CW mode.  

 

Table 1: Designed Electron-Hadron Colliders 

 Ring-Ring Linac-Ring 

 ENC MEIC LHeC 
RR 

LHeC 
LR 

eRHIC 

CME, 
GeV 

14  15-65 
(140) 

1300 1300 
(2000) 

45-175 

On the 
base of 

HESR 
FAIR 
(GSI) 

CEBAF 
(JLab) 

LHC 
(CERN) 

LHC 
(CERN) 

RHIC 
(BNL) 

 
Table 2 presents a summary of main beam parameters 

for electron-proton collisions for the future collider 
designs discussed in this paper as well as for HERA.  

PHYSICS OBJECTIVES 
Here I list some of most important studies that can be 

done with the future electron-hadron colliders (which are 
also often called electron-ion colliders, or EICs) 

While, from previous experiments, the rich information 
has been obtained on the momentum structure functions 
of nucleon constituents, a high-luminosity EIC will be 
able to explore also the spatial distributions of nucleon  
constituents, thus realizing the imaging of the nucleons. 

The question how the proton gets its spin remains still 
unanswered. This proton spin puzzle needs to be fully 
resolved. With EIC’s, using polarized proton and electron 
beams, the contribution from gluons to the proton spin 
can be measured in the region of low momentum fraction 
not accessible by RHIC polarized proton experiments.  
The contribution to the proton spin from the orbital 
momentum of quark and gluons also can be obtained on 
the basis of the data from the proton imaging. The beams 
of polarized light ions will be used in EICs to get 
measurements for the spin of neutron. 

One of the important results from HERA was the 
discovery of increasing gluon density at low values of 
gluon momentum. Mapping the gluon content of the ions 
and protons at low momentum region, verifying whether 
it is saturated at some level, and exploring the properties 
of this high-density gluon state are important tasks for 
understanding both the nucleon structure and the general 
ways QCD works. More efficiently the high-density gluon 
studies can be done with heavy ion beams. Because of 
that the use of the heavy ion beams is important feature of 
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future EICs. Experiments with heavy ion beams will also 
provide further insights on spatial and momentum 
structure of the nucleus. 

The physics objectives mentioned above mainly 
characterize the future EIC’s as big femtoscopes for 
studies of the nucleon structure. But with the very high 

luminosity of such colliders or with very high CME (on 
TeV scale) one can also effectively do exploration and he 
searches for new physics (GUTs, lepto-quarks, Higgs 
physics…). 

 

 

Table 2: Beam Parameters for HERA and for the Highest Luminosity e-p Designs of Future EICs 

 HERA ENC MEIC eRHIC LHeC 
linac-ring 

LHeC 
ring-ring 

 p e p e p e p e p e p e 
Energy, GeV 920 27.5 15 3 60 5 250 20 7000 60 7000 60 
Bunch 
frequency, 
MHz 

 
10.4 

 
52 (104) 

 
750 

 
14.1 

 
20 

 
40 

Bunch 
intensity, 
×1011 

 
0.72 

 
0.29 

 
0.54 

(0.36) 

 
2.3 

 
0.042 

 
0.25 

 
2 

 
0.22 

 
1.7 

 
0.02 

 
1.7 

 
0.2 

Beam 
current, mA 

100 40 450 
(600) 

1900 500 3000 420 50 430 6.4 860 100 

Norm.rms 
emittance, 
x/y, m 

 
5 

 
1100/
180 

 
2.3/ 
0.8 

 
930/ 
320 

 
0.35/
0.07 

 
54/11 

 
0.18 

 
26.4 

 
3.75 

 
50 

 
3.75 

 
580/ 
290 

*, x/y,  
cm 

245/ 
18 

63/26 30 
(10) 

30 4/0.8 4/0.8 5 5 10 12 180/ 
50 

18/1
0 

Beam size at 
IP, x/y/ m 

112/30 200/120 15/3 6/6 7/7 30/16 

Bunch 
length, cm 

19 1 30 
(20) 

10 1 0.75 8 0.2 8 0.03 8 1 

Polariza-
tion, % 

0 45 80 80 70 80 70 80 0 90 0 40 

Peak 
luminosity, 
1033 cm-2s-1 

 
0.04 

 

 
0.2 (0.6) 

 
14.2 

 
9.7 

 
1.0 

 
1.7 

 

COLLIDER DESIGNS 

ENC  
The FAIR facility, which is under construction at GSI 

research center (Germany), will provide intense beams of 
ion and antiprotons for the scientific research. Relatively 
recently (2008) it was proposed to use the HESR of the 
FAIR facility to store the polarized protons and deuterons 
and also to construct 3.3 GeV electron circular accelerator 
in the HESR tunnel to provide polarize electrons [2,3]. 
This will open way to make the polarized p/d on polarized 
e collisions in the location of the PANDA detector, thus 
adding the Electron-Nucleon Collider (ENC) to the FAIR 
facility. The PANDA detector of the FAIR facility is 
intended for the experiments with antiprotons scattering 
on the internal target. But, much of the capability of 
PANDA detector can be used for e-p and e-d collision 
experiments. 

The realization of the e-p collision capability will 
require a special interaction region. Also, the dedicated 
hardware to produce and accelerate polarized protons and 

deuterons has to be added in the injector chain and in the 
HESR ring. Longitudinal polarization of electrons and 
hadrons has to be produced in the interaction point. The 
electron cooler designed for the FAIR facility requirement 
has to be upgraded to higher electron current to satisfy the 
ENC demands.  

As shown in Table 2, the baseline design would lead to 
the luminosity of 2 1032 cm-2 s-1. But, more advanced 
interaction region design, with * = 10 cm, is under 
consideration, which may allow to increase the ENC 
luminosity up to 6 1032 cm-2 s-1.  

Compared with other EICs designs the ENC is at 
somewhat earlier stage of development. But it clearly 
demonstrates a good opportunity to add the electron-
nucleon scattering study capability to the FAIR facility. 

 

MEIC 
Thomas Jefferson Laboratory in the United States 

develops the design of the Medium Energy Electron-Ion 
Collider MEIC. In Figure 1 the general layout of this 
collider is shown. All MEIC components fit well on the 
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ejection of the electron bunches in/from the recirculator, 
have to operate with the repetition rate from few MHz to 
tens of MHz and 1 GHz bandwitdh. The test facility for 
the beam recirculator has been proposed in JLab on the 
basis of the FEL ERL [14]. The test facility intends to 
explore the beam quality lifetime of bunches in the 
recirculator, related beam dynamics issues, and, on second 
stage of the experiment, the operation of fast kickers. The 
present plan is to complete the first stage of the 
recirculator test in 2015. 

For the ERL-based colliders high beam power ERL 
technology will be used. The ERL test facility has been 
built in BNL in order to test the key components of SRF 
technology (with a 704 MHz BNL cavity) and the energy 
recovery with high beam average current (up to 0.5 A) 
[15].   

The polarized beam technologies are also in the core of 
EICs designs. All future colliders plan to use the polarized 
electron beam. In the ring-ring designs the spin matching 
and the harmonic correction techniques have to be 
employed to minimize the beam depolarization due to 
synchrotron radiation, especially, in the presence of spin 
rotators and solenoidal detector magnets [16]. On the 
other side, the linac-ring designs utilize the high-current 
polarized electron source, with the average current 
ranging from 6 mA (LHeC) to 50 mA (eRHIC). The 
development of the high current polarized gun is the 
important R&D item of the LR designs [17]. Most of the 
future EICs also plan to use the polarized proton and light 
ion beams. eRHIC will take advantage of the multiple 
devices and techniques already utilized in the injector 
chain, as well as in RHIC itself, for the successful 
acceleration of polarized protons through numerous spin 
resonances, and for the control of the proton polarization 
in the interaction points. MEIC will take advantage of the 
Figure-8 shaped rings to accelerate polarized deuteron 
beam [18]. 

For all future colliders the additional capability of using 
positron beam is very favorable.  In the case of the linac-
ring designs the task of achieving the luminosity of e+-p 
collisions to be of similar order with e--p collisions  
presents a great challenge. In the development of LHeC 
LR design the novel techniques for increasing the positron 
beam intensity are under consideration. Those include the 
advanced targets for the e+ production, the use of 
powerful gamma beam source and the schemes for 
positron beam recycling and reuse [19]. 

ASYMMETRIC DESIGN ISSUES 
Some important design features are related to the 

asymmetric nature of EICs colliders in terms of colliding 
species.  

First of all, all of the collider designs take the advantage 
of the HERA experience, and require the matching of the 
electron and hadron beam sizes at the interaction point. 
Since MEIC and eRHIC intend to operate in a wide range 
of electron and hadron energies, the control of * and 
transverse emittances of both electrons and hadrons to 
match the IP beam sizes at all energies is vital. This fact 

puts requirements on the lattice design, as well as, for the 
LR designs, on the electron source emittance control. 

The second feature concerns the bunch frequency 
matching of the electrons and hadrons. For both eRHIC 
and MEIC the hadrons are not yet ultra-relativistic, and 
the change of the hadron energy considerably affects the 
hadron revolution frequency. Special provisions have to 
be made in those collider designs to match the bunch 
frequencies of hadrons and electrons at different hadron 
energies. These provisions include the variable 
circumference of either electron or hadron accelerators, 
RF harmonic switching and the appropriate range of 
frequency tuning for the SRF cavities. 
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