Keyword: diagnostics
Paper Title Other Keywords Page
MOSBC3 An Implementation of the Virtual Accelerator in the Tango Control System controls, lattice, simulation, storage-ring 23
 
  • P.P. Goryl, A.I. Wawrzyniak
    Solaris, Kraków, Poland
  • M. Sjöström
    MAX-lab, Lund, Sweden
  • T. Szymocha
    Cyfronet, Kraków, Poland
 
  Funding: Work supported by the European Regional Development Fund within the frame of the Innovative Economy Operational Program: POIG.02.01.00-12-213/09
Integration of simulating codes into the control system gives a possibility to improve machine operation. Providing tools for making computations directly within the control system and letting exchange data between the control system and models is a way of simplifying the whole process of calculating and applying machine's operational parameters as well as keeping track of them. In addition, having so-called an on-line model could be useful for system diagnostic and faults detection, especially when the objective approach is considered. The concept of the Virtual Accelerator will be presented as well as its implementation for the Tango control system as it is planned to be used for both facilities: the Solaris in Kraków, Poland and the MAX IV in Lund, Sweden. This includes the ModelServer tango device, the simplified C/C++ Tango API to be used with codes like Tracy and the tango2elegant script providing easy solution for integrating the Elegant tool with the Tango.
 
slides icon Slides MOSBC3 [2.232 MB]  
 
WEAAC2 Simulation of Baseband BTFs Using a Particle-in-cell Code simulation, beam-beam-effects, lattice, proton 121
 
  • P.A. Görgen
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim
    GSI, Darmstadt, Germany
  • W. Fischer, S.M. White
    BNL, Upton, Long Island, New York, USA
 
  A simulation model for transverse bunched beam transfer functions (BTFs) at the base harmonic is presented. It is based on a code including different machine effects, most notably transverse space charge using a two-dimensional (2D) Poisson solver. A simplified model for the simulation of the strong-strong beam-beam effect was implemented using either 2D field data or analytic expressions under the assumption of Gaussian beams for the beam-beam interaction. The validity of the BTF model is verified based on the comparison of BTF and Schottky spectra features with analytic expectations from literature. The simulation model is then applied to the RHIC proton lattice. A linear transfer map is used between interaction points. BTFs including the beam-beam effect are simulated. Measurements are compared to simulation results at machine conditions.  
slides icon Slides WEAAC2 [2.829 MB]