
AN IMPLEMENTATION OF THE VIRTUAL ACCELERATOR IN THE
TANGO CONTROL SYSTEM*

P. Goryl#, A. I. Wawrzyniak, Solaris at the Jagiellonian University, Krakow, Poland
T. Szymocha, ACK Cyfronet AGH, Krakow, Poland

M. Sjöström, MAX IV laboratory, Lund, Sweden
Abstract

Integrating physics codes into the control system gives a
possibility to improve machine operation. Providing tools for
making computations directly within the control system and
letting exchange data between the control system and models
is a way of simplifying the whole process of calculating and
applying machine's operational parameters as well as keeping
track of them. In addition, having a so-called on-line model
could be useful for the system diagnostic and faults detection,
especially when the objective approach is considered. The
concept of the Virtual Accelerator as well as its
implementation for the Tango control system will be presented
as it is planned to be used for both facilities: the Solaris in
Krakow, Poland and the MAX IV in Lund, Sweden. This
includes the ModelServer tango device, the simplified C/C++
Tango API to be used with physics codes like Tracy 3 and the
tango2elegant script providing an easy solution for integrating
the elegant tool with the Tango Control System.

INTRODUCTION
The Virtual Accelerator is a concept of integrating and

interfacing different simulation codes into the control
system (CS). However, an implementation presented here
could be used with any kind of computation codes. It has
been successfully implemented at the SLS[1] using the
CORBA protocol and at the Diamond Light Source for
the EPICS control system[2].

The Virtual Accelerator implementation for the Tango
CS presented in this paper has been developed with
several goals:

• Standardize a way to starting and stopping
computations from the control system

• Simplify data exchange between the control system
and the simulation code

• Provide a standard interfaces to different kind of
equipment (classes of devices in case of the Tango
CS)

• Provide a central point for storing calculated
machine parameters within the control system
architecture thus making these directly available for
all control system applications

• Provide a facility to debug control system scripts and
high level applications before these will be run for a
real machine. It is expected to make the machine
commissioning more efficient.

The Tango CS
The Tango control system implements an objective

approach

to

interface

controlled

devices.

It

provides

an

interface with attributes, representing process values
(PVs) or state values and commands representing
operations one can invoke on a particular device. Each
device is in fact represented as an object of a certain class
as it is in the Object Oriented Programming (OOP) [3].

The OOP introduce a mechanism called the
polymorphism along with a mechanism of the classes
inheritance. This provides a way to abstract from what is
behind an interface. As an example, all power supplies
integrated in a control system (CS) could expose the same
interface to users regardless of a fieldbus the CS is using
to communicate with a particular equipment. This also
means that it is possible to use the same interface to a
model of a controlled system as to the real one. With
some assumptions actors interacting with the CS will not
be able to distinguish if they work with a real or a
modelled system. It does not mean that the same could
not be achieved with a non-object oriented CS.
Nonetheless, the OOP makes it natural.

Integrating physics codes with the CS takes advantage
of the existing tools of the control system. The
integration is expected to improve the system diagnostic
as well as simplify applying to the machine calculated
machine’s parameters. The computation results could be
logged with the Historical and the Temporary Databases
(the HDB and the TDB). Computed settings could be
remembered as a snapshot with the Tango SNAP tool.
Making the model available through the control system
could enable online comparison between the real machine
and the virtual one. Distributing machine’s parameters,
simulation results and real machine’s signals through the
Tango control system will prevent from clutter caused by
using different protocols for data exchange.

The Virtual Accelerator for the Tango Project provides
the following components:

• The Model Server device. It is a device that
standardizes and simplifies invoking of computation
from the Tango CS.

• The Simple-Tango (STango) API. This is C/C++
library enabling access to a Tango CS in a ‘one line
code’. It hides some Tango complexity.

• The tango2elegant. This is a script interfacing the
elegant tool with the Tango CS.

THE MODEL SERVER
The Model Server is a tool to run computations inside

the Tango control system. It is implemented as a Tango
device. Its class name is ModelServer. It is written in the
Python language with the PyTango library. The Model-

 __

* Work supported by the European Regional Development Fund
within the frame of the Innovative Economy Operational Program:
POIG.02.01.00-12-213/09
#piotr.goryl@uj.edu.pl Server class inherits from the DynamicDS class[4].

Proceedings of ICAP2012, Rostock-Warnemünde, Germany MOSBC3

10 Controls and Simulation

ISBN 978-3-95450-116-8

23 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

The Model Server device is able to run any arbitrary
program, script or operating system command. All what is
supposed to be run is called a Job. The Model Server
device is an interface to run and to control the execution
of jobs through the Tango CS.

For the security reasons jobs are placed on a disk in
subdirectories of a selected directory. This is specified by
a device property named JobsPath (device properties are
the feature of the Tango CS). Those subdirectories names
denote Jobs’ names. Additional security measure is
provided with possibility to execute the jobs with system
credentials provided by two another device properties:
SystemUser and SystemGroup. Details on how to deploy
and configure the Model Server are found in [5].

The Model Server Interface
The Model Server provides four main commands to

control jobs
• On – to initiate a job
• Off – to clean after a job
• Start – to start the initiated job for certain number of

iterations or in an infinite loop.
• Stop – to stop execution of the job. It is possible to

stop it immediately (kill the process) or wait for the
current iteration to finish.

The model server provides reading attributes, to
diagnose job progress: number of finished iterations,
when the job has been started, how long it takes to do the
job, the job’s name.

Since the device class is based on the DynamicDS class
it is possible to define so-called dynamic attributes. These
may be used by a job to set and read values.

Jobs
However, while the Model Server can run any arbitrary

script or code. Its primary application is to run a beam
physics code using input from the control system. This
kind of codes typically run iteratively in steps:

• Loading a model (lattice file)
• Reading values from the control system
• Modifying the model according to the values from the CS
• Computing
• Reading the results
• Writing the above to the CS
It could be that some of the steps are not implemented

in a particular job. However, the reading from and the
writing to the CS are common. It is not necessary for an
operator or a beam physicist to know details of the control
system programming. This is where two another
components - the Simple Tango and the tango2elegant -
comes into play. Those are described later in this paper.

The Model Server Limitations
The main limitations for the current implementation of

the Model Server are that it can only be run on *nix
operating systems and that it depends on the sudo tool.
However, future versions will aim to improve flexibility
in starting jobs. As an example it will be possible to

directly use the Unicore middleware for setting the job’s
credentials as well as sending it to a remote computing
resource like the PL-Grid infrastructure [7]. In addition, it
would be of interest to trigger a job based on CS events,
such as changes in certain settings or read values.

THE SIMPLE TANGO (STANGO)
Simple-tango is a C/C++ library that simplifies access to

the Tango control system with C/C++ codes. It is a set of
functions for reading and writing devices’ attributes in a
“one line” code. It hides most of the Tango complexity (even
though it is not very complex) from a code writer. It is not
intended to replace the Tango API. For more complex
operations, one will need to use the Tango API anyway.

The STango uses the standard C/C++ data types to get
and to set attributes’ values. It does a real conversion from
the Tango data types to the C numeric types: double,
float, short, unsigned short, int, unsigned
int.

There are functions for reading and for writing values
of scalar, spectrum (1D array) and image (2D array)
formats. There is also a function for calling argument-less
tango commands. For compatibility with the C there are
specific functions that deal with each of the supported C
data types. Template functions are provided for use in
C++ codes. Please refer to the documentation [5] and the
STango source code for details.

The STango Source Code
Simple-Tango provides two header files: stango.h,

stangoimpl.h and two implementation files: stangolib.cpp
that implements functions for the C and stangoimpl.cpp
that implements a device proxies management. These are
compiled to the library libstango.so, which have to be
linked with a program (i.e. the gcc option -lstango).

The stango.h is the header file for use with pure C
programs. In C++ code one can use the stangoimpl.h. It
provides generic functions as well as giving access to
some internal library functionalities.

THE TANGO2ELEGANT
The elegant physics code is used at MAX IV and at

Solaris to design and investigate the linear accelerators as
well as the storage rings [8,9]. elegant is a code provided
by the Advanced Photon Source [10]. It does a variety of
beam dynamics related calculations. The main input file of
elegant is structured as a series of Fortran namelists.
These namelists are commands with their parameters. The
commands setup and invoke calculations. The command
parameters’ values are specified directly or in specified
external files. As an example, a lattice file describing a
machine lattice is provided as a reference. The commands
are defined and described in the elegant documentation [6].
Among the elegant commands there is a command
&alter_elements. It allows runtime modification of a
parameter value for one or more elements [6]. This feature is
exploited by the tango2elegant.

MOSBC3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

24C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

10 Controls and Simulation

The tango2elegant is written in the Python language. It acts
as a pre- and a post-processor of the elegant input and output
files. In pre-processing it reads a main input file and sends
effects to the standard output or a file. Its output can be used
by the elegant as an input. For the post-processing it uses the
main input file and the elegant output files and modifies values
in the control system.

It searches the elegant main input file for additional
commands (not defined in the elegant) and special strings.
Two commands has been arbitrarily defined - &tango_input
and &tango_output. Special strings are replaced with
respective values see [5].

If &tango_input command is found it is altered with a set
of proper elegant commands in the output. Values for
parameters in these commands come from the control system.

If &tango_output is found it is not sent to the output
(hence elegant will not see it) but according to its
parameters the tango2elegant reads elegant output files and set
values in the control system respectively.

Other commands are directly passed to the elegant.
Comments are omitted. Please refer to the documentation [5]
to see details on how to use the commands.

Usage of the tango2elegant
The simplest way of using the tango2elegant is to call it

as the following:
tango2elegant input.ele | elegant \
–pipe=in,out

Providing that input.ele is an elegant input file with added
&tango_input and/or &tango_output commands.

The other way is suitable for running with the Pelegant. To
assure that there is ready and valid output from the Pelegant, it
is worth to wait until it stops before processing the output:
pre-process only &tango_input:
tango2elegant –-no-tango-out input.ele tmp.ele
run computation:
mpirun --mca btl openib,tcp,self -np 6 \
Pelegant tmp.ele

process only &tango_output:
tango2elegant --no-tango-in input.ele

STATUS
All three modules have been implemented.
There are efforts to deploy the Virtual Accelerator on the PL-

Grid infrastructure [7]. A dedicated virtual machine (vm) acting
as a Tango host [4] and running several Tango device servers is
up and running. The vm is run inside a cloud being a part of the
PL-Grid computation infrastructure. It is possible to send jobs
from the virtual machine to infrastructure clusters using the
Unicore midleware. The Model Server is supposed to use it. A
current setup reveal a bug in the sudo tool (on Scienific Linux
el5), that in the certain condition wait infinitely for a subprocess
to finish even if it has already ended. It makes impossible to
detect the end of an iteration. Measures has been taken and the
Model Server is in redevelopment to be more flexible in the way
it starts and waits for iterations.

The elegant and the Pelegant have been installed and
successfully used for the beam dynamics calculation on the
ZEUS cluster at the ACK Cyfronet in Krakow, which is a part

of the PL-Grid infrastructure. Using parallel elegant on the
Zeus cluster for particles tracking studies, performing
frequency maps analysis, etc. benefits in much shorter
calculation time (hours instead of days on a PC). The Tango
with its libraries and tools has been compiled on the ZEUS,
too. It has been proven that it is possible to use the Tango
protocol to exchange data between the cluster and the virtual
machine. It means that it is possible to have the Virtual
Accelerator running on a clusters infrastructure.

It is planned to deploy the Virtual Accelerator at the MAX
IV Laboratory, soon. It will be used to tests high level
applications and scripts for the MAX IV and the Solaris
control system, before real machines will be installed. It is
expected to shorten the commissioning time as well as make
it smother. Later it will be run in parallel to the real machines
also providing an online model.

All the source codes and documentation will be
available through a publicly available SVN server, soon.

ACKNOWLEDGMENT
This research was supported in part by the PL-Grid

Infrastructure [7].
Thanks for Johan Bengtsson for bringing the idea of the

Virtual Accelerator and his comments on the project.
Thanks for Claudio Scafuri from the Elettra and Filip

Lindau from the MAX IV Laboratory for their codes which,
although now heavily modified, served as a base for
tango2elegant.

REFERENCES
[1] M. Böge et al., “Commissioning of the SLS using

CORBA based beam dynamics applications”,
PAC’01, TOPB012 (2001).

[2] M. T. Heron et al., “The DIAMOND Light Source
Control System”, EPAC’06, THPCH113 (2006);
http://accelconf.web.cern.ch/Accelconf/e06/PAPERS/TH
PCH113.PDF

[3] The TANGO Team, The TANGO Control System
Manual, Pink Site (2012);
http://ftp.esrf.eu/pub/cs/tango/tango_80.pdf

[4] S. Rubio-Manrique et al., “Dynamic attributes and
other functional flexibilities of PyTango”,
ICALAPCS’09, THP079 (2009).

[5] P. Goryl, “The Virtual Accelerator for the Tango CS
documentation”, Solaris (2012).

[6] M. Borland, User’s Manual for elegant, APS (2011).
[7] M. Bubak et al., Building a National Distributed e-

Infrastructure -- PL-Grid, (Springer, 2012).
[8] A. I. Wawrzyniak, et al., “Injector Layout and Beam

Injection into Solaris”, THPC123, Proceedings of
IPAC 2011, San Sebastián, Spain.

[9] A. I. Wawrzyniak, et al; “Solaris storage ring lattice
optimization with strong insertion devices”;
TUPPC025; Proceedings of IPAC’12, New Orleans
Louisiana, USA (2012).

[10]http://www.aps.anl.gov/Accelerator_Systems_Divisio
n/Accelerator_Operations_Physics/software.shtml

Proceedings of ICAP2012, Rostock-Warnemünde, Germany MOSBC3

10 Controls and Simulation

ISBN 978-3-95450-116-8

25 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

