Keyword: target
Paper Title Other Keywords Page
TUPSO42 Shimming Strategy for the Phase Shifters Used in the European XFEL simulation, undulator, electron, laser 313
 
  • Y. Li, J. Pflüger, F. Wolff-Fabris
    XFEL. EU, Hamburg, Germany
  • H.H. Lu, Y.F. Yang
    IHEP, Beijing, People's Republic of China
 
  The undulator systems of the European XFEL need a total of 91 Phase Shifters. The 1st field integral of these devices must not exceed 0.004Tmm for working gaps > 16mm. For smaller gaps it is slightly released. In spite of the highly magnetically symmetric design and considerable effort such as the selection and sorting of the magnets small 1st field integral errors cannot be excluded. In this paper a strategy is studied to correct small gap dependent kicking errors as expected for the phase shifters of the XFEL. EU.by using shims of different geometries and sizes. It is found, that small gap dependent kicking errors can well be corrected for using this method. This is a systematic effort to provide effective fast tuning methods, which can be applied for the mass production. The meaning of shim signature will be explained in this paper. The method is demonstrated by simulations and measurements.  
 
TUPSO89 A Femtosecond Resolution Electro-optic Diagnostic Using a Nanosecond-pulse Laser laser, diagnostics, FEL, optics 447
 
  • D.A. Walsh, W.A. Gillespie
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • S.P. Jamison
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S.P. Jamison
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This project has been funded by CERN as part of the CLIC-UK programme Contract Number KE1865/DG/CLIC
Electro-optic diagnostics with a target time resolution of 20fs RMS, and with intrinsically improved stability and reliability, are being developed. The new system is based on explicit temporal measurement of an electro-optically upconverted pulse, following interaction of the bunch with a quasi-CW probe pulse. The electro-optic effect generates an “optical-replica” of the longitudinal charge distribution from the narrow-bandwidth probe, simultaneously up-converting the bunch spectrum to optical frequencies. By using Frequency Resolved Optical Gating (FROG), an extension of autocorrelation, the optical replica can then be characterised on a femtosecond time scale. This scheme therefore bypasses the requirement for unreliable femtosecond laser systems. The high pulse energy required for single-shot pulse measurement via FROG will be produced through optical parametric amplification of the optical-replica pulses. The complete system will be based on a single nanosecond-pulse laser – resulting in a reliable system with greatly relaxed timing requirements.
 
 
WEOANO01 New Scheme to Generate a Multi-terawatt and Attosecond X-ray Pulse in XFELs electron, laser, undulator, FEL 464
 
  • T. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  A new scheme to be applied in XFELs has been recently proposed*, which effectively compresses the X-ray pulse, i.e., shortens the pulse length and enhances the peak power by means of inducing a periodic current enhancement with an optical laser and applying a temporal shift between the X-ray and electron beams. In this paper, detailed mechanism of the new scheme is explained together with numerical results applied to the SACLA XFEL facility.
*T. Tanaka, PRL 110, 084801 (2013)
 
slides icon Slides WEOANO01 [4.177 MB]  
 
THOCNO03 The Potential Uses of X-ray FELs in Nuclear Studies laser, photon, controls, optics 749
 
  • W.-T. Liao, C.H. Keitel, A. Pálffy
    MPI-K, Heidelberg, Germany
 
  X-ray FELs have the potential to allow the study of electronic-nuclear and nuclear dynamics. Observation of such interactions, and the possibility of controling them, offers the prospect of a great leap in science capability. Discussions of the possibilities are reatively recent and both FEL scientists and the potential users could benefit greatly via direct interaction at the conference.  
slides icon Slides THOCNO03 [8.591 MB]