Author: Lidia, S.M.
Paper Title Page
TUPLM29 Current Status and Prospects of FRIB Machine Protection System 437
TUPLM28   use link to see paper's listing under its alternate paper code  
 
  • Z. Li, D. Chabot, S. Cogan, S.M. Lidia
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) is designed to accelerate beam up to 400 kW power with kinetic energy ≥ 200 MeV/u. Fast response of the machine protection system is critical for FRIB beam commissioning and operation to prevent damage to equipment. The beam commissioning of the first linac segment, including fifteen cryomodules, has been completed. Four ion species were accelerated to a beam energy of 20.3 MeV/u with duty factors from 0.05 percent to continuous wave. The peak beam current exceeded 10 percent of the final requirements. This paper summarizes the status of the machine protection system deployed in the production, Machine interlock response time of ~8 μs was achieved. Incentives for future development include being able to achieve smooth and reliable beam operation, faster machine protection response time and real time data analysis of failure mode.
 
poster icon Poster TUPLM29 [2.067 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM29  
About • paper received ※ 28 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLS07 Helical Transmission Line Test Stand for Non-Relativistic BPM Calibration 463
SUPLO05   use link to see paper's listing under its alternate paper code  
 
  • C.J. Richard
    NSCL, East Lansing, Michigan, USA
  • S.M. Lidia
    FRIB, East Lansing, Michigan, USA
 
  Measurements of non-relativistic beams by coupling to the fields are affected by the properties of the non-relativistic fields. The authors propose calibrating for these effects with a test stand using a helical line which can propagate pulses at low velocities. Presented are simulations of a helical transmission line for such a test stand which propagates pulses at 0.033c. A description of the helix geometry used to reduce dispersion is given as well as the geometry of the input network.  
poster icon Poster TUPLS07 [3.469 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLS07  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLE05 Optical System for Observation of FRIB Target 570
 
  • I.N. Nesterenko, G. Bollen, M. Hausmann, A. Hussain, S.M. Lidia, S. Rodriguez Esparza
    FRIB, East Lansing, Michigan, USA
  • G. Bollen
    NSCL, East Lansing, Michigan, USA
  • G. Bollen
    MSU, East Lansing, Michigan, USA
  • I.N. Nesterenko
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
Facility for Rare Isotope Beams (FRIB) is a next-generation rare-isotope research facility under construction at Michigan State University (MSU). FRIB will produce rare-isotope beams of unprecedented intensities by impinging a 400 kW heavy-ion beam on a production target and by collecting and purifying the rare isotopes of interest with a fragment separator. A thermal imaging system (TIS) has been developed to monitor the beam spot on the production target. The main features and characteristics of optical system is presented. The prototype of optical system has been tested.
 
poster icon Poster TUPLE05 [1.840 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE05  
About • paper received ※ 27 August 2019       paper accepted ※ 06 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLE07 Overview of FRIB’s Diagnostics Controls System 576
 
  • B.S. Martins, S. Cogan, M.G. Konrad, S.M. Lidia, D.O. Omitto, P.J. Rodriguez
    FRIB, East Lansing, Michigan, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
In this work we will present an overview of the diagnostics systems put in place by FRIB’s Beam Instrumentation and Measurements department. We will focus on the controls and integration aspects for different kinds of equipment, such as pico ammeters and motor controllers, used to drive and readback the devices deployed on the beamline, such as profile monitors, Faraday cups, etc. In particular, we will discuss the controls software used in our deployment and how we make use of continuous integration and deployment systems to automate certain tasks and make the controls system in production more robust.
 
poster icon Poster TUPLE07 [2.302 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE07  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH04 Beam Envelope Reconstruction for FRIB-FS1 Transport Line Using Beam Position Monitors 810
 
  • T. Yoshimoto, S. Cogan, J.L. Crisp, K. Fukushima, S.M. Lidia, T. Maruta, P.N. Ostroumov, A.S. Plastun, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The Facility for Rare Isotope Beam (FRIB) includes a heavy ion superconducting (SC) linac. Recently we completed beam commissioning of the Linac Segment 1 (LS1) and 45° bend section of the Folding Segment 1 (FS1). Four ion species, 40Ar9+, 20Ne6+, 86Kr17+ and 129Xe26+ were successfully accelerated to a beam energy of 20.3 MeV/u. We explored the possibility of non-invasive beam diagnostics for online beam envelope monitoring based on beam quadrupole moments derived from Beam Position Monitors (BPMs)*. In future operations, various ion beam species will be accelerated and minimization of beam tuning time is critical. To address this requirement, it is beneficial to use BPMs to obtain beam Twiss parameters instead of wire scanners. This paper reports the results of BPM-based beam Twiss parameters evolution in the FS1.
* R. E. Shafer, "Laser Diagnostic for High Current H beams", Proc. 1998 Beam Instrumentation Workshop (Stanford). A.I.P. Conf. Proceedings, (451), 191.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH04  
About • paper received ※ 27 August 2019       paper accepted ※ 16 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH06 Commissioning Status of the FRIB Front End 813
 
  • H.T. Ren, J. Brandon, N.K. Bultman, K.D. Davidson, E. Daykin, T. Elkin, B. Galecka, P.E. Gibson, L. Hodges, K. Holland, D.D. Jager, M.G. Konrad, B.R. Kortum, S.M. Lidia, G. Machicoane, I.M. Malloch, H. Maniar, T. Maruta, G. Morgan, D.G. Morris, P. Morrison, A.C. Morton, P.N. Ostroumov, A.S. Plastun, E. Pozdeyev, X. Rao, T. Russo, J.W. Stetson, R. Walker, J. Wei, Y. Yamazaki, T. Yoshimoto, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • S. Renteria
    NSCL, East Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The FRIB Front End was successfully commissioned in 2017 with commissioning goals achieved and Key Per-formance Parameters (KPP) demonstrated for both 40Ar9+ and 86Kr17+ beams. Two more ion species, 20Ne6+ and 129Xe26+, have been commissioned on the Front End and delivered to the superconducting linac during the beam commissioning of Linac Segment 1 (LS1) in March 2019. In August 2019, Radio Frequency Quadrupole (RFQ) conditioning reached the full design power of 100 kW continuous wave (CW) that is required to accelerate Ura-nium beams. Start-up/shutdown procedures and opera-tional screens were developed for the Front End subsys-tems for trained operators, and auto-start and RF fast re-covery functions have been implemented for the Front End RFQ and bunchers. In this paper, we will present the current commissioning status of the Front End, and per-formance of the main technical systems, such as the ECR ion source and RFQ.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH06  
About • paper received ※ 01 September 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH09 FRIB Driver Linac Integration to be ready for Phased Beam Commissioning 823
 
  • H. Ao, S. Beher, N.K. Bultman, F. Casagrande, C. Compton, J.C. Curtin, K.D. Davidson, K. Elliott, V. Ganni, A. Ganshyn, P.E. Gibson, I. Grender, W. Hartung, L. Hodges, K. Holland, A. Hussain, M. Ikegami, S. Jones, P. Knudsen, S.M. Lidia, G. Machicoane, S.J. Miller, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, J. Priller, T. Russo, K. Saito, S. Stanley, D.R. Victory, X. Wang, J. Wei, M. Xu, T. Xu, Y. Yamazaki, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  Funding: Work supported by the U.S. Department of Energy (DOE) Office of Science under Cooperative Agreement DE-SC0000661
The driver linac for Facility for Rare Isotope Beams (FRIB) will accelerate all stable ion beams from proton to uranium beyond 200 MeV/u with beam powers up to 400 kW. The linac now consists of 104 superconducting quarter-wave resonators (QWR), which is the world largest number of low-beta SRF cavities operating at an accelerator facility. The first 3 QWR cryomodules (CM) (β = 0.041) were successfully integrated with cryogenics and other support systems for the 2nd Accelerator Readiness Review (ARR). The 3rd ARR scope that includes 11 QWR CM (β=0.085) and 1 QWR matching CM (β=0.085) was commissioned on schedule by January 2019, and then we met the Key Performance Parameters (KPP), accelerating Ar and Kr > 16 MeV/u at this stage, in a week upon the ARR authorization. We examine a variety of key factors to the successful commissioning, such as component testing prior to system integration, assessment steps of system/device readiness, and phased commissioning. This paper also reports on the integration process of the β=0.085 CMs including the test results, and the current progress on β=0.29 and 0.53 CMs in preparation for the upcoming 4th ARR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH09  
About • paper received ※ 02 September 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBA3 Status of Beam Commissioning in FRIB Driver Linac 951
 
  • T. Maruta, S. Cogan, K. Fukushima, M. Ikegami, S.H. Kim, S.M. Lidia, G. Machicoane, F. Marti, D.G. Morris, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, J. Wei, T. Xu, T. Yoshimoto, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The beam commissioning of linac segment 1 (LS1) composed of fifteen cryomodules consisting of total 104 superconducting (SC) resonators and 36 SC solenoids was successfully completed. Four ion beam species, Ne, Ar, Kr and Xe were successfully accelerated up to 20.3 MeV/u. The FRIB driver linac in its current configuration became the highest energy continuous wave hadron linac. We will report a detailed study of beam dynamics in the LS1 prior to and after stripping with a carbon foil.
 
slides icon Slides THZBA3 [11.377 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBA3  
About • paper received ※ 04 September 2019       paper accepted ※ 20 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBB1
Commissioning of the FRIB Beam Instrumentation  
 
  • S.M. Lidia
    FRIB, East Lansing, Michigan, USA
 
  A large variety of beam instrumentation have been developed, installed and commissioned. This talk will present various aspects of physics and engineering of beam instrumentation devices and their performance during the beam commissioning.  
slides icon Slides THZBB1 [20.535 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBB4 Beam Loss in the First Segment of the FRIB Linac 965
TUPLE17   use link to see paper's listing under its alternate paper code  
 
  • R. Shane, S. Cogan, S.M. Lidia, T. Maruta
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
Beam loss in accelerators is an unavoidable and often unwanted reality, but it is not without its use. Information from beam loss can be leveraged to optimize the tune and improve beam quality, in addition to monitoring for machine fault and failure conditions. The folded geometry at the Facility for Rare Isotope Beams (FRIB) presents a unique challenge in the detection of radiative losses, resulting in the introduction of non-traditional measurement schemes. In addition to neutron detectors and pressurized ionization chambers, FRIB will utilize halo ring monitors, fast thermometry within the cryomodules, and differential beam-current measurements. This paper will present an analysis of beam-loss measurements from commissioning the first segment of the FRIB accelerator, and a discussion of ways to evaluate and monitor the health of the beam loss monitoring system.
 
slides icon Slides THZBB4 [2.477 MB]  
poster icon Poster THZBB4 [0.584 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBB4  
About • paper received ※ 04 September 2019       paper accepted ※ 17 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)