Author: Barth, W.A.
Paper Title Page
TUPAF088 Final factory-side Measurements of the Next SC CH-Cavities for the HELIAC-Project 943
 
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, F.D. Dziuba, M. Heilmann, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  Funding: Work supported by the EU Framework Programme H2020 662186 (MYRTE); Work supported by BMBF Contr. No. 05P15RFBA;
The upcoming FAIR project (Facility for Antiproton and Ion Research) at GSI will use the existing UNILAC (UNIversal Linear Accelerator) as an injector to provide high intensity heavy ion beams at low repetition rates. As a consequence a new superconducting (sc) continous wave (cw) high intensity heavy ion Linac is required to provide ion beams above the coulomb barrier to keep the Super Heavy Element (SHE) physics program at GSI competitive on an international level. The fundamental Linac design comprises a high performance ion source, the High Charge State Injector (HLI) upgraded for cw-operation and a matching line (1.4 MeV/u) followed by a sc Drift Tube Linac (DTL). Four cryo modules each equipped with three Crossbar-H-mode (CH) structures provide for acceleration up to 7.3 MeV/u. The first section of this ambitious accelerator project has been successfully commissioned and tested with heavy ion beam from the HLI in 2017. It comprises two sc 9.3 T solenoids and a sc 217 MHz CH-cavity with 15 equidistant gaps as a demonstrator. The construction of the next two sc 217 MHz 8 gap CH-cavities is nearly finished and final factory-side measurements will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK002 Advanced Approach for Beam Matching along the Multi-Cavity SC CW Linac at GSI 955
 
  • S. Yaramyshev, W.A. Barth, M. Heilmann
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  A multi-stage program for the development of a heavy ion superconducting (sc) continuous wave (cw) linac is in progress at HIM (Mainz, Germany) and GSI (Darmstadt, Germany) under support of IAP (Frankfurt, Germany). In 2017 the first section of the CW-Linac has been successfully commissioned at GSI. Beam acceleration at the CW-Linac is foreseen to be performed by up to twelve multi-gap CH cavities. The linac should provide the beam for physics experiments, smoothly varying the output particle energy from 3.5 to 7.3 MeV/u, simultaneously keeping high beam quality. Due to a wide variation of the input- and output -beam energy for each cavity, a longitudinal beam matching to every cavity is of high importance. An advanced algorithm for an optimization of matched beam parameters under variable rf-voltage and rf-phase of each cavity has been developed. The description of the method and the obtained results are presented in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK003 Beam Dynamics Simulations for the New Superconducting CW Heavy Ion LINAC at GSI 959
 
  • M. Schwarz, M. Basten, M. Busch, H. Podlech
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  Funding: Work supported by BMBF Contr. No. 05P15RFBA and EU Framework Programme H2020 662186 (MYRTE)
For future experiments with heavy ions near the coulomb barrier within the super-heavy element (SHE) research project a multi-stage R&D program of GSI/HIM and IAP is currently in progress. It aims for developing a supercon-ducting (sc) continuous wave (CW) LINAC with multiple CH cavities as key components downstream the High Charge State Injector (HLI) at GSI. The LINAC design is challenging due to the requirement of intense beams in CW mode up to a mass-to-charge ratio of 6, while covering a broad output energy range from 3.5 to 7.3 MeV/u with unchanged minimum energy spread. Testing of the first CH-cavity in 2016 demonstrated a promising maximum accelerating gradient of Ea = 9.6 MV/m; the worldwide first beam test with this sc multi-gap CH-cavity in 2017 was a milestone in the R&D work of GSI/HIM and IAP. In the light of experience gained in this research so far, the beam dynamics layout for the entire LINAC has recently been updated and optimized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK004 Superconducting CH-Cavity Heavy Ion Beam Testing at GSI 962
 
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  Recently the first section of a standalone superconducting (sc) continuous wave (cw) heavy ion Linac as a demonstration of the capability of 217 MHz multi gap Crossbar H-mode structures (CH) has been commissioned and extensively tested with beam from the GSI- High Charge State Injector. The demonstrator set up reached acceleration of heavy ions up to the design beam energy and beyond. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This contribution presents systematic beam measurements with varying RF-amplitudes and phases of the CH-cavity, as well as versatile phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multi gap CH-cavity is a milestone of the R&D work of Helmholtz Institute Mainz (HIM) and GSI in collaboration with Goethe University Frankfurt (GUF) in preparation of the sc cw heavy ion Linac project and other cw-ion beam applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK006 Bunch Shape Measurements at the GSI CW-Linac Prototype 2091
 
  • T. Sieber, W.A. Barth, P. Forck, V. Gettmann, M. Heilmann, H. Reeg, A. Reiter, S. Yaramyshev
    GSI, Darmstadt, Germany
  • F.D. Dziuba, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • A. Feschenko, S.A. Gavrilov
    RAS/INR, Moscow, Russia
 
  The existing GSI accelerator will become the injector for FAIR. To preserve and enhance the current experimental program at UNILAC, a new Linac is under development, which shall run in parallel to the FAIR injector, providing cw-beams of ions at energies from 3.5 - 7.3 MeV/u. For this cw-Linac a superconducting prototype cavity has been developed and was first operated with beam in summer 2017. The resonator is a cross-bar H-structure (CH) of 0.7 m length, with a resonant frequency of 216.8 MHz. It has been installed behind the GSI High Charge State Injector (HLI), which provided 108 MHz bunches of 1.4 MeV/u Ar6+/9+/11+ ions at a duty cycle of 25 %. Due to the frequency jump and small longitudinal acceptance of the CH, proper matching of the HLI beam to the prototype was required. The bunch properties of the injected beam as well as the effect of different phase- and amplitude-settings of the cavity were measured in detail with a bunch shape monitor (BSM) fabricated at INR, Moscow, while the mean energy was analyzed by time of flight method. In this contribution, the bunch shape measurements are described and the capabilities of the used BSM measurement principle are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML039 Design of the Two-Gap Superconducting Re-Buncher 2779
 
  • M. Gusarova, W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • W.A. Barth, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, M. Busch
    IAP, Frankfurt am Main, Germany
  • M. Gusarova
    JINR, Dubna, Moscow Region, Russia
 
  A new design of a spoke cavity for low relative velocities of heavy ions has been elaborated. Simulation results for a 2-gap spoke cavity with a resonance frequency of 216.816 MHz and a relative velocity of 0.07с are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML040 Further Tests on the Final State of the SC 325 MHz CH-Cavity and Coupler Test Bench Update 2783
 
  • M. Busch, M. Basten, J. List, P. Müller, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • W.A. Barth, J. List
    GSI, Darmstadt, Germany
  • W.A. Barth
    HIM, Mainz, Germany
  • W.A. Barth
    MEPhI, Moscow, Russia
 
  Funding: Work supported by BMBF Contr. No. 05P15RFBA
At the Institute for Applied Physics, Goethe-University Frankfurt, a sc 325 MHz CH-cavity has been developed and successfully tested up to 14.1 mV/m and has now reached the final production stage with the helium vessel welded to the frontal joints of the cavity and final processing steps have been performed. Further tests in a vertical and horizontal environment are being prepared for intensive studies. This cavity is a prototype for envisaged beam tests with a pulsed ion beam at 11.4 AMeV. In this contribution the results of the performed RF tests are being presented. Furthermore, first measurements of the recently installed 217 MHz coupler test bench are shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML041 Comparative Study of Low Beta Multi-Gap Superconducting Bunchers 2786
 
  • K.V. Taletskiy, W.A. Barth, M. Gusarova, S. Yaramyshev
    MEPhI, Moscow, Russia
  • W.A. Barth, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, M. Busch
    IAP, Frankfurt am Main, Germany
  • M. Gusarova
    JINR, Dubna, Moscow Region, Russia
 
  The results of a comparative study of low beta multi-gap superconducting bunchers for 216.816 MHz and a relative velocity of 0.07с with dedicated limitations of the overall geometrical dimensions are presented. A comparison of electrodynamic, mechanical and thermal properties of 3-gap and 2-gap cavities is shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML045 Infrastructure for Superconducting CH-Cavity Preparation at HIM 2796
 
  • T. Kürzeder, K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, M. Miski-Oglu, E. Riehn
    HIM, Mainz, Germany
  • K. Aulenbacher, R.G. Heine, T. Stengler
    IKP, Mainz, Germany
  • W.A. Barth, S. Yaramyshev
    GSI, Darmstadt, Germany
  • F. Hug
    KPH, Mainz, Germany
 
  A superconducting cw LINAC for heavy ions is currently under development at GSI in Darmstadt and HIM in Mainz. This Linac is based on 217 MHz multigap bulk niobium Crossbar H-mode RF-cavities. In order to treat and prepare RF-cavities with such a complex geometry a new cleanroom facility has been already built at the Helmholtz-Institut in Mainz. All tools and machines inside the cleanroom can handle cavities with up to 800 mm in diameter and with up to 1300 mm in length. In its ISO-class 6 and 4 zones, respectively it features a large ultrasonic and conductance rinsing bath, a high pressure rinsing (HPR) cabinet and a vacuum oven. The HPR cabinet has an inside clearance of 1.4 m. The large cavities sit on a rotating table, while the rising wand moves vertically up and down. Due to the crossbar structure of the RF-cavities the HPR device allows for off axis-rinsing in their quadrants. For RF testing a 52 m² (4 m x 13 m) concrete shielded area with sufficient liquid helium and nitrogen supply is located next to the cleanroom and the cryo-module assembly area. We will report on the new SRF infrastructure in Mainz and the commissioning of the new high pressure rinsing cabinet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)