Paper | Title | Page |
---|---|---|
TUP073 | Superconducting Thin Films Characterization at HZB with the Quadrupole Resonator | 616 |
|
||
Funding: EASITrain - European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action Innovative Training Networks founded by H2020 under Grant Agreement no. 764879 Superconducting thin films have great potential as post-Nb material for use in SRF applications in future accelerators and industry. To test the RF-performance of such films in practice, would require the building and coating of a full RF cavity. Deposition of thin films on such scales in test facilities are challenging, in particular when curved surfaces have to be coated. This greatly complicates their systematic research. In this contribution we report on the method we use to characterize small and flat thin film samples (Deposited onto both Nb and Cu substrates) in an actual cavity named the Quadrupole Resonator (QPR). We also summarize the latest measurement results of NbTiN thin films. The Quadrupole Resonator at HZB is a tool that is able to perform SRF characterizations at frequencies ~415, 847, 1300 MHz with RF fields using an RF-DC power compensation technique. |
||
![]() |
Poster TUP073 [2.318 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP073 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 02 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THFUA1 | RF Characterization of an S-I-S’ Multilayer Sample | 800 |
|
||
S-I-S’ multilayers promise to boost the performance of bulk superconductors in terms of maximum field and surface resistance. At HZB, RF-surface resistance measurements were performed with a Quadrupole Resonator (QPR) and an S-I-S’ sample (75 nm NbTiN on 15 nm AlN insulator on bulk Nb) prepared at JLab. Measurements were performed at 414, 845, and 1286 MHz at sample temperatures from 2 K up to well above the transition temperature of NbTiN of ~17.3 K. The Rs exhibits an unexpected temperature dependence: Rather than rising monotonically, as expected from BCS theory, a local maximum is observed. There is a temperature range where Rs decreases with increasing temperature. Such behavior indicates that an additional interaction between the superconducting layers may have to be included in the surface resistance model. Measurements of the baseline Nb sample prior to coating exhibited no such behavior; hence systematic measurement errors can be excluded as the explanation. The maximum field was limited by a hard magnetic quench near 20 mT, close to Hc1 of NbTiN, suggesting that the sample is limited by early flux penetration. | ||
![]() |
Slides THFUA1 [1.004 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THFUA1 | |
About • | paper received ※ 22 June 2019 paper accepted ※ 03 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THFUA3 |
Material and Superconducting Properties of NbTiN/AlN Multilayer Films | |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DARPA-BAA MIPR No. HD0011728910 In the pursuit of increasing the range of surface magnetic fields sustainable in SRF cavities, new standards in quality of thin multi-layer superconductor/insulator/superconductor (SIS) structures are being achieved. With the synergistic development of multilayered metamaterials based on 3 to 1 nm NbTiN and AlN films, the interface between films is improved. Based on bulk film values, the maximum magnetic field contour plot is also established for NbTiN to guide the choice of each layer thickness and quickly converge to optimized SIS structures. The delayed DC flux entry is measured for standalone NbTiN films and multilayer stacked structures on ideal substrates and Nb substrates. Some SIS structures along with standalone NbTiN films have been deposited on Nb and their superconducting properties and RF surface impedance are evaluated. |
||
![]() |
Slides THFUA3 [28.515 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP004 | Design and Fabrication of a Quadrupole-Resonator for Sample R&D | 838 |
SUSP042 | use link to see paper's listing under its alternate paper code | |
|
||
Being able to obtain BCS and material properties from the same surface is necessary to gain a fundamental understanding of the evolution of SRF surfaces. A test resonator which will allow to obtain BCS properties from samples is currently under development at the University of Hamburg and DESY and is based on the Quadrupole Resonators developed and operated at CERN and HZB. The current status of the necessary infrastructure, the procurement process and design considerations are shown. In addition, an outline of the planed R&D project with the Quadrupole Resonator will be presented and first RF measurements and surface analysis results of samples will be shown | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP004 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |